Skip to main content
Log in

Photothermal laser processing of thin silicon nanoparticle films: on the impact of oxide formation on film morphology

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Photothermal laser processing of thin films of H-terminated silicon nanoparticles (Si NPs) is investigated. Ethanolic dispersions of Si NPs with an average diameter of 45 nm are spin-coated on silicon substrates yielding films with thicknesses ≤500 nm. Small-area laser processing is carried out using a microfocused scanning cw-laser setup operating at a wavelength of 532 nm and a 1/e laser spot size of 1.4 μm. In conjunction with microscopic techniques, this provides a highly reproducible and convenient approach in order to study the dependence of the resulting film morphology and composition on the experimental parameters. Processing in air results in strongly oxidized granular structures with sizes between 100 and 200 nm. The formation of these structures is dominated by surface oxidation. In particular, changing the processing parameters (i.e., laser power, writing speed, and/or the background air pressure) has little effect on the morphology. Only in vacuum at pressures <1 mbar, oxygen adsorption, and hence oxide formation, is largely suppressed. Under these conditions, irradiation at low laser powers results in mesoporous surface layers, whereas compact silicon films are formed at high laser powers. In agreement with these results, comparative experiments with films of H-terminated and surface-oxidized Si NPs reveal a strong impact of the surface oxide layer on the film morphology. Mechanistic aspects and implications for photothermal processing techniques, e.g., targeting photovoltaic and thermoelectric applications, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. X. Hu, G. Li, J.C. Yu, Langmuir 26, 3031 (2010)

    Article  Google Scholar 

  2. H. Goesmann, C. Feldmann, Angew. Chem., Int. Ed. Engl. 49, 1362 (2010)

    Article  Google Scholar 

  3. R. Lechner, H. Wiggers, A. Ebbers, J. Steiger, M.S. Brandt, M. Stutzmann, Phys. Status Solidi 1, 262 (2007)

    Google Scholar 

  4. R. Lechner, A.R. Stegner, R.N. Pereira, R. Dietmueller, M.S. Brandt, A. Ebbers, M. Trocha, H. Wiggers, M. Stutzmann, J. Appl. Phys. 104, 053701 (2008)

    Article  ADS  Google Scholar 

  5. H. Kim, R.C.Y. Auyeung, M. Ollinger, G.P. Kushto, Z.H. Kafafi, A. Piqué, Appl. Phys. A 83, 73 (2006)

    Article  ADS  Google Scholar 

  6. G. Mincuzzi, L. Vesce, A. Reale, A. Di Carlo, T.M. Brown, Appl. Phys. Lett. 95, 103312 (2009)

    Article  ADS  Google Scholar 

  7. M. Nakata, K. Takechi, S. Yamaguchi, E. Tokumitsu, H. Yamaguchi, S. Kaneko, Jpn. J. Appl. Phys. 48, 115505 (2009)

    Article  Google Scholar 

  8. M. Nakata, K. Takechi, T. Eguchi, E. Tokumitsu, H. Yamaguchi, S. Kaneko, Jpn. J. Appl. Phys. 48, 081608 (2009)

    Article  ADS  Google Scholar 

  9. H. Pan, N. Misra, S.H. Ko, C.P. Grigoropoulos, N. Miller, E.E. Haller, O. Dubon, Appl. Phys. A 94, 111 (2009)

    Article  ADS  Google Scholar 

  10. G. Schierning, R. Theissmann, H. Wiggers, D. Sudfeld, A. Ebbers, D. Franke, V.T. Witusiewicz, M. Apel, J. Appl. Phys. 103, 084305 (2008)

    Article  ADS  Google Scholar 

  11. D. Bäuerle, Laser Processing and Chemistry (Springer, Berlin, 2011)

    Book  Google Scholar 

  12. S.H. Ko, H. Pan, C.P. Grigoropoulos, C.K. Luscombe, J.M.J. Fréchet, D. Poulikakos, Appl. Phys. Lett. 90, 141103 (2007)

    Article  ADS  Google Scholar 

  13. H. Pan, D.J. Hwang, S.H. Ko, T.A. Clem, J.M.J. Fréchet, D. Bäuerle, C.P. Grigoropoulos, Small 6, 1812 (2010)

    Article  Google Scholar 

  14. R. Bartlome, B. Strahm, Y. Sinquin, A. Feltrin, C. Ballif, Appl. Phys. B 100, 427 (2010)

    Article  ADS  Google Scholar 

  15. G. Fortunato, L. Mariucci, A. La Magna, P. Alippi, M. Italia, V. Privitera, B. Svensson, E. Monakhov, Appl. Phys. Lett. 85, 2268 (2004)

    Article  ADS  Google Scholar 

  16. E.V. Monakhov, B.G. Svensson, M.K. Linnarsson, A. La Magna, M. Italia, V. Privitera, G. Fortunato, M. Cuscunà, L. Mariucci, Appl. Phys. Lett. 87, 081901 (2005)

    Article  ADS  Google Scholar 

  17. A. Limmanee, T. Sugiura, H. Yamamoto, T. Sato, S. Miyajima, A. Yamada, M. Konagai, Jpn. J. Appl. Phys. 47, 8796 (2008)

    Article  ADS  Google Scholar 

  18. A. Ogane, K. Hirata, K. Horiuchi, Y. Nishihara, Y. Takahashi, A. Kitiyana, T. Fuyuki, Jpn. J. Appl. Phys. 48, 071201 (2009)

    Article  ADS  Google Scholar 

  19. N. Petermann, N. Stein, G. Schierning, R. Theissmann, B. Stoib, M.S. Brandt, C. Hecht, C. Schulz, H. Wiggers, J. Phys. D, Appl. Phys. 44, 174034 (2011)

    Article  ADS  Google Scholar 

  20. T. Balgar, S. Franzka, N. Hartmann, Appl. Phys. A 82, 689 (2006)

    Article  ADS  Google Scholar 

  21. M. Mathieu, N. Hartmann, New J. Phys. 12, 125017 (2010)

    Article  ADS  Google Scholar 

  22. D. Briggs, M.P. Seah, Practical Surface Analysis Auger and X-ray Photoelectron Spectroscopy (Wiley, Chichester, 1990)

    Google Scholar 

  23. S.R. Kelemen, Y. Goldstein, B. Abeles, Surf. Sci. 116, 488 (1982)

    Article  ADS  Google Scholar 

  24. A. Santoni, V.R. Dhanak, L. Grill, L. Petaccia, Surf. Sci. 474, L217 (2001)

    Article  Google Scholar 

  25. G. Lange, C.A. Meli, J.P. Toennies, E.F. Greene, Phys. Rev. B 56, 4642 (1997)

    Article  ADS  Google Scholar 

  26. M.C. Flowers, N.B.H. Jonathan, Y. Liu, A. Morris, J. Chem. Phys. 99, 7038 (1993)

    Article  ADS  Google Scholar 

  27. J.D. Plummer, M. Deal, P.B. Griffin, Silicon VLSI Technology, Prentice Hall, Upper Saddle River (2000)

    Google Scholar 

  28. S. Onclin, B.J. Ravoo, D.N. Reinhoudt, Angew. Chem., Int. Ed. 44, 6282 (2005)

    Article  Google Scholar 

  29. M. Nosonovsky, B. Bhushan, Multiscale Disspiative Mechanims and Hierarchical Surfaces (Springer, Heidelberg, 2008)

    Google Scholar 

Download references

Acknowledgements

Financial support by the European Union, and the Ministry of Innovation, Science and Research of the State of North Rhine-Westphalia in Germany (NanoEnergieTechnikZentrum, NETZ, Objective 2 Programme: European Regional Development Fund, ERDF), the BASF Coatings AG and the Deutsche Forschungsgemeinschaft (DFG, Grant HA-2769/3-1) is gratefully acknowledged. The authors thank Ralf Theissmann for help with SEM characterization of breaking edges and Kurt Kolasinski for helpful comments and discussions. N.H. also gratefully thanks Eckart Hasselbrink for his continuing support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nils Hartmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Behrenberg, D., Franzka, S., Petermann, N. et al. Photothermal laser processing of thin silicon nanoparticle films: on the impact of oxide formation on film morphology. Appl. Phys. A 106, 853–861 (2012). https://doi.org/10.1007/s00339-012-6779-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-6779-8

Keywords

Navigation