Skip to main content
Log in

High repetition rate femtosecond laser nano-machining of thin films

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Thin film laser micromachining has been utilized for repairing semiconductor masks, creating solar cells and fabricating MEMS devices. A unique high repetition rate femtosecond fiber laser system capable of variable repetition rates from 200 KHz to 25 MHz along with helium gas assist was used to study the effect of pulse repetition rate and pulse energy on femtosecond laser machining of gold-coated silicon wafer. It was seen that high repetition rates lead to smaller craters with uniform line width. Craters created at 13 MHz pulse repetition rate with 2.042 J/cm2 beam energy fluence measured 110 nm in width and had a heat affected zone of 0.79 μm. It was found that pulse repetition rate only played a significant role in the size of the heat affected zone in the lower pulse energy ranges. In the future, a 1 W laser system will be acquired to find the optimal repetition rate that would create the minimal feature size with the least heat affected zone. Using this kind of setup along with techniques such as radial polarization and a different gas assist may enable us to create sub 100 nm feature size with good quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Venkatakrishnan, B. Tan, B.K.A. Ngoi, Femtosecond pulsed laser ablation of thin gold film. Opt. Laser Technol. 34, 199–202 (2002)

    Article  ADS  Google Scholar 

  2. J. Kim, S. Na, Metal thin film ablation with femtosecond pulsed laser. Opt. Laser Technol. 39, 1443–1448 (2007)

    Article  ADS  Google Scholar 

  3. R. Haight, A. Wagner, P. Longo, D. Lim, Femtosecond laser ablation and deposition of metal films on transparent substrates with applications in photomask repair, in Proceedings of SPIE—The International Society for Optical Engineering, Bellingham, WA, 2005, vol. 5714. Commercial and Biomedical Applications of Ultrafast Lasers V (2005), pp. 24–36

  4. K. Mukaihara, M. Yoshioka, S. Ito, Y. Suzuki, 351 nm femtosecond laser with Nd:glass regenerative amplifier for thin films ablation, in Proceedings of SPIE—The International Society for Optical Engineering, Bellingham, WA, 2006, vol. 6108. Commercial and Biomedical Applications of Ultrafast Lasers VI (2006), pp. 610810-1–610810-8

  5. S. Zoppel, H. Huber, G.A. Reider, Selective ablation of thin Mo and TCO films with femtosecond laser pulses for structuring thin film solar cells. Appl. Phys. A Mater. Sci. Process. 89(1), 161–163 (2007)

    Article  Google Scholar 

  6. D. Ruthe, K. Zimmer, T. Höche, Etching of CuInSe2 thin films—comparison of femtosecond and picosecond laser ablation. Appl. Surf. Sci. 247(14), 447–452 (2005)

    Article  ADS  Google Scholar 

  7. S. Preuss, A. Demchuk, M. Stuke, Sub-picosecond UV laser ablation of metals. Appl. Phys. A 61, 33 (1995)

    Article  ADS  Google Scholar 

  8. S. Preuss, E. Matthias, M. Stuke, Sub-picosecond UV-laser ablation of Ni films. Appl. Phys. A 59, 79–82 (1994)

    Article  ADS  Google Scholar 

  9. T. Götz, M. Stuke, Short-pulse UV laser ablation of solid and liquid metals: indium. Appl. Phys. A 64, 539–543 (1997)

    Article  ADS  Google Scholar 

  10. I. Zergioti, M. Stuke, Short pulse UV laser ablation of solid and liquid gallium. Appl. Phys. A 67, 391–395 (1998)

    Article  ADS  Google Scholar 

  11. Clark-MXR Inc., Dexter, MI (4 Feb. 2008), http://www.cmxr.com/Industrial/Handbook

  12. K. Venkatakrishnan, P. Stanley, L.E.N. Lim, Femtosecond laser ablation of thin films for the fabrication of binary photomasks. J. Micromechanics Microengineering 12, 775–779 (2002)

    Article  ADS  Google Scholar 

  13. K. Venkatakrishnan, B. Tan, N.R. Sivakumar, Sub-micron ablation of metallic thin film by femtosecond pulse laser. Opt. Laser Technol. 34, 575–578 (2002)

    Article  ADS  Google Scholar 

  14. E.G. Gamaly, A.V. Rode, B. Luther-Davies, Ultrafast ablation with high-pulse-rate lasers. Part I: Theoretical considerations. J. Appl. Phys. 85(8), 4213–4221 (1999)

    Article  Google Scholar 

  15. L. Shah, A.Y. Arai, S.M. Eaton, P.R. Herman, Waveguide writing in fused silica with a femtosecond fiber laser at 522 nm and 1 MHz repetition rate. Opt. Express 13(6), 1999–2006 (2005)

    Article  ADS  Google Scholar 

  16. Physik Instrumente (PI) GmbH & Co. KG, Karlsruhe/Palmbach, Germany (15 Mar. 2008), http://www.physikinstrumente.com/en/products/prdetail.php?sortnr=300710

  17. Special Optics, Wharton, NJ (15 Mar. 2008), http://www.specialoptics.com/Telecentric%20UV%20Scanning%20Lenses.html

  18. K. Venkatakrishnan, B. Tan, P. Stanley, L.E.N. Lim, B.K.A. Ngoi, Femtosecond pulsed laser direct writing system. Opt. Eng. 41(6), 1441–1445 (2002)

    Article  ADS  Google Scholar 

  19. Y. Dong, P. Molian, Femtosecond pulsed laser ablation of 3C-SiC thin film on silicon. Appl. Phys. A Mater. Sci. Process. 77(6), 839–846 (2003)

    Article  ADS  Google Scholar 

  20. K. Venkatakrishnan, P. Stanley, N.R. Sivakumar, B. Tan, L.E.N. Lim, Effect of scanning resolution and fluence fluctuation on femtosecond laser ablation of thin films. Appl. Phys. A Mater. Sci. Process. 77(5), 655–658 (2003)

    Article  ADS  Google Scholar 

  21. A. Borowiec, H.K. Haugen, Femtosecond laser micromachining of grooves in indium phosphide. Appl. Phys. A Mater. Sci. Process. 79(3), 521–529 (2004)

    Article  ADS  Google Scholar 

  22. S.M. Eaton, H. Zhang, P.R. Herman, F. Yoshino, L. Shah, J. Bovatsek, A.Y. Arai, Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate. Opt. Express 13(12), 4708–4716 (2005)

    Article  ADS  Google Scholar 

  23. R.R. Gattass, L.R. Cerami, E. Mazur, Micromachining of bulk glass with bursts of femtosecond laser pulses at variable repetition rates. Opt. Express 14(12), 5279–5284 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Tan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tan, B., Dalili, A. & Venkatakrishnan, K. High repetition rate femtosecond laser nano-machining of thin films. Appl. Phys. A 95, 537–545 (2009). https://doi.org/10.1007/s00339-008-4938-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-008-4938-8

PACS

Navigation