Skip to main content
Log in

Mid-infrared metamaterial based on perforated SiC membrane: engineering optical response using surface phonon polaritons

  • Invited paper
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We theoretically and experimentally study electromagnetic properties of a novel mid-infrared metamaterial: optically thin silicon carbide (SiC) membrane perforated by an array of sub-wavelength holes. Giant absorption and transmission is found using Fourier transformed infrared (FTIR) microscopy and explained by introducing a frequency-dependent effective permittivity εeff(ω) of the perforated film. The value of εeff(ω) is determined by the excitation of two distinct types of hole resonances: delocalized slow surface polaritons (SSPs) whose frequencies are largely determined by the array period, and a localized surface polariton (LSP) corresponding to the resonance of an isolated hole. Only SSPs are shown to modify εeff(ω) strongly enough to cause giant transmission and absorption. Because of the sub-wavelength period of the hole array, anomalous optical properties can be directly traced to surface polaritons, and their interpretation is not obscured by diffractive effects. Giant absorbance of this metamaterial can be utilized in designing highly efficient thermal radiation sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Ozbay, Science 31, 189 (2006)

    Article  ADS  Google Scholar 

  2. W.L. Barnes, A. Dereux, T.W. Ebbesen, Nature 424, 824 (2003)

    Article  ADS  Google Scholar 

  3. R. Hillenbrandt, T. Taubner, F. Keilmann, Nature 418, 159 (2002)

    Article  ADS  Google Scholar 

  4. P. Berini, Phys. Rev. B 63, 125417 (2001)

    Article  ADS  Google Scholar 

  5. R. Zia, M.D. Selker, P.B. Catrysse, M.L. Brongersma, J. Opt. Soc. Am. A 21, 2442 (2004)

    Article  ADS  Google Scholar 

  6. A. Huber, N. Ocelic, D. Kazantsev, R. Hillenbrandt, Appl. Phys. Lett. 87, 081103 (2005)

    Article  ADS  Google Scholar 

  7. G. Shvets, Phys. Rev. B 338, 035109 (2003)

    Article  ADS  Google Scholar 

  8. H. Shin, S. Fan, Phys. Rev. Lett. 96, 073907 (2006)

    Article  ADS  Google Scholar 

  9. A. Alu, N. Engheta, J. Opt. Soc. Am. B 23, 571 (2006)

    Article  ADS  Google Scholar 

  10. N. Fang, H. Lee, C. Sun, X. Zhang, Science 308, 534 (2005)

    Article  ADS  Google Scholar 

  11. D.O.S. Melville, R.J. Blaikie, Opt. Express 13, 2127 (2005)

    Article  ADS  Google Scholar 

  12. D. Korobkin, Y. Urzhumov, G. Shvets, J. Opt. Soc. Am. B 23, 468 (2005)

    Article  ADS  Google Scholar 

  13. S.I. Bozhevolnyi, V.S. Volkov, E. Devaux, J.-Y. Laluet, T.W. Ebbesen, Nature 440, 508 (2006)

    Article  ADS  Google Scholar 

  14. F. Le, N.Z. Lwin, J.M. Steele, M. Kall, N.J. Halas, P. Nordlander, Nano Lett. 5, 2009 (2005)

    Article  ADS  Google Scholar 

  15. T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, P.A. Wolff, Nature 391, 667 (1998)

    Article  ADS  Google Scholar 

  16. W.L. Barnes, W.A. Murray, J. Dintiger, E. Devaux, T.W. Ebbesen, Phys. Rev. Lett. 92, 107401 (2004)

    Article  ADS  Google Scholar 

  17. J. Prikulis, P. Hanarp, L. Olofsson, D. Sutherland, M. Kall, Nano Lett. 4, 1003 (2004)

    Article  ADS  Google Scholar 

  18. J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, Y. Chen, Nature 416, 61 (2002)

    Article  ADS  Google Scholar 

  19. Q. Cao, P. Lalanne, Phys. Rev. Lett. 88, 057403 (2002)

    Article  ADS  Google Scholar 

  20. H. Lezec, T. Thio, Opt. Express 12, 3629 (2004)

    Article  ADS  Google Scholar 

  21. J.B. Pendry, L. Martin-Moreno, F.J. Garcia-Vidal, Science 305, 847 (2004)

    Article  ADS  Google Scholar 

  22. C. Zorman, J. Appl. Phys. 78, 5136 (1995)

    Article  ADS  Google Scholar 

  23. S. Fan, J.D. Joannopoulos, Phys. Rev. B 65, 235112 (2002)

    Article  ADS  Google Scholar 

  24. D. Bergman, D. Stroud, Solid State Phys. 46, 147 (1992)

    Article  Google Scholar 

  25. M.I. Stockman, S.V. Faleev, D.J. Bergman, Phys. Rev. Lett. 87, 167401 (2001)

    Article  ADS  Google Scholar 

  26. G. Shvets, Y. Urzhumov, Phys. Rev. Lett. 93, 243902 (2004)

    Article  ADS  Google Scholar 

  27. D.R. Fredkin, I.D. Mayergoyz, Phys. Rev. Lett. 91, 253902 (2003)

    Article  ADS  Google Scholar 

  28. I.D. Mayergoyz, D.R. Fredkin, Z. Zhang, Phys. Rev. B 72, 155412 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Shvets.

Additional information

PACS

41.20.Cv; 42.70.Qs; 71.45.Gm

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korobkin, D., Urzhumov, Y., Neuner III, B. et al. Mid-infrared metamaterial based on perforated SiC membrane: engineering optical response using surface phonon polaritons. Appl. Phys. A 88, 605–609 (2007). https://doi.org/10.1007/s00339-007-4084-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-007-4084-8

Keywords

Navigation