Skip to main content
Log in

Super-Planckian thermal radiation enabled by hyperbolic surface phonon polaritons

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Excitation of surface resonance modes and presence of resonance-free hyperbolic modes are two common ways to enhance the near-field radiative energy transport, which can find wide applications in noncontact thermal management and energy harvesting. Here, we identify another way to achieve the super-Planckian thermal radiation via hyperbolic surface phonon polaritons (HSPhPs). Based on the fluctuation-dissipation theory, the near-field radiative heat flux between bulk hexagonal boron nitride (hBN) planes with the optical axis perpendicular to the radiative energy flow can be 120 times as large as the blackbody limit for a gap distance of 20 nm. When the film thickness is reduced to 10 nm, the radiative heat flux is found to increase by 26.3%. The underlying mechanism is attributed to the coupling of Type I HSPhPs inside the anisotropic hBN film, which improves the energy transmission coefficient over a broad wavevector space especially for waves with extremely high wavevectors. This work helps to deepen the understanding of near-field radiation between natural hyperbolic materials, and opens a new route to enhance the near-field thermal radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang Z M. Nano/Microscale Heat Transfer. New York: McGraw-Hill, 2007

    Google Scholar 

  2. Modest M F. Radiative Heat Transfer. 3rd ed. Cambridge: Academic Press, 2013

    Google Scholar 

  3. Howell J R, Siegel R, Mengüç M P. Thermal Radiation Heat Transfer. 5th ed. Boca Raton: CRC Press Taylor&Francis, 2010

    Google Scholar 

  4. Xuan Y. An overview of micro/nanoscaled thermal radiation and its applications. Photon Nanostr Fundam Appl, 2014, 12: 93–113

    Article  Google Scholar 

  5. Liu X L, Wang L P, Zhang Z M. Near-field thermal radiation: Recent progress and outlook. Nanoscale Microscale Thermophys Eng, 2015, 19: 98–126

    Article  Google Scholar 

  6. Song B, Fiorino A, Meyhofer E, et al. Near-field radiative thermal transport: From theory to experiment. AIP Adv, 2015, 5: 053503

    Article  Google Scholar 

  7. Rytov S M, Kravtsov Y A, Tatarskii V I. Principles of Statistical Radiophysics. New York: Springer, 1989

    Book  MATH  Google Scholar 

  8. Shen S. Experimental studies of radiative heat transfer between bodies at small separations. Annu Rev Heat Transfer, 2013, 16: 327–343

    Article  Google Scholar 

  9. Park K, Zhang Z. Fundamentals and applications of near-field radiative energy transfer. Front Heat Mass Transfer, 2013, 4: 013001

    Article  Google Scholar 

  10. Cahill D G, Braun P V, Chen G, et al. Nanoscale thermal transport. II. 2003–2012. Appl Phys Rev, 2014, 1: 011305

    Article  Google Scholar 

  11. Rousseau E, Siria A, Jourdan G, et al. Radiative heat transfer at the nanoscale. Nat Photonics, 2009, 3: 514–517

    Article  Google Scholar 

  12. St-Gelais R, Guha B, Zhu L, et al. Demonstration of strong near-field radiative heat transfer between integrated nanostructures. Nano Lett, 2014, 14: 6971–6975

    Article  Google Scholar 

  13. Song B, Ganjeh Y, Sadat S, et al. Enhancement of near-field radiative heat transfer using polar dielectric thin films. Nat Nanotechnol, 2015, 10: 253–258

    Article  Google Scholar 

  14. Kittel A, Muller-Hirsch W, Parisi J, et al. Near-field heat transfer in a scanning thermal microscope. Phys Rev Lett, 2005, 95: 224301

    Article  Google Scholar 

  15. Lim M, Lee S S, Lee B J. Near-field thermal radiation between doped silicon plates at nanoscale gaps. Phys Rev B, 2015, 91: 195136

    Article  Google Scholar 

  16. Dimatteo R S, Greiff P, Finberg S L, et al. Enhanced photogeneration of carriers in a semiconductor via coupling across a nonisothermal nanoscale vacuum gap. Appl Phys Lett, 2001, 79: 1894–1896

    Article  Google Scholar 

  17. Park K, Basu S, King W P, et al. Performance analysis of near-field thermophotovoltaic devices considering absorption distribution. J Quant Spectrosc Ra, 2008, 109: 305–316

    Article  Google Scholar 

  18. Bernardi M P, Dupré O, Blandre E, et al. Impacts of propagating, frustrated and surface modes on radiative, electrical and thermal losses in nanoscale-gap thermophotovoltaic power generators. Sci Rep, 2015, 5: 11626

    Article  Google Scholar 

  19. Narayanaswamy A, Chen G. Surface modes for near field thermophotovoltaics. Appl Phys Lett, 2003, 82: 3544–3546

    Article  Google Scholar 

  20. Messina R, Ben-Abdallah P. Graphene-based photovoltaic cells for near-field thermal energy conversion. Sci Rep, 2013, 3: 1383

    Article  Google Scholar 

  21. Guha B, Otey C, Poitras C B, et al. Near-field radiative cooling of nanostructures. Nano Lett, 2012, 12: 4546–4550

    Article  Google Scholar 

  22. Mulet J P, Joulain K, Carminati R, et al. Nanoscale radiative heat transfer between a small particle and a plane surface. Appl Phys Lett, 2001, 78: 2931–2933

    Article  Google Scholar 

  23. Otey C R, Lau W T, Fan S. Thermal rectification through vacuum. Phys Rev Lett, 2010, 104: 154301

    Article  Google Scholar 

  24. Wang L P, Zhang Z M. Thermal rectification enabled by near-field radiative heat transfer between intrinsic silicon and a dissimilar material. Nanoscale Microscale Thermophys Eng, 2013, 17: 337–348

    Article  Google Scholar 

  25. Huang J G, Li Q, Zheng Z H, et al. Thermal rectification based on thermochromic materials. Int J Heat Mass Transf, 2013, 67: 575–580

    Article  Google Scholar 

  26. Zhu L, Otey C R, Fan S. Ultrahigh-contrast and large-bandwidth thermal rectification in near-field electromagnetic thermal transfer between nanoparticles. Phys Rev B, 2013, 88: 184301

    Article  Google Scholar 

  27. Yang Y, Basu S, Wang L. Radiation-based near-field thermal rectification with phase transition materials. Appl Phys Lett, 2013, 103: 163101

    Article  Google Scholar 

  28. Ben-Abdallah P, Biehs S-A. Near-field thermal transistor. Phys Rev Lett, 2014, 112: 044301

    Article  Google Scholar 

  29. Cui L, Huang Y, Wang J, et al. Ultrafast modulation of near-field heat transfer with tunable metamaterials. Appl Phys Lett, 2013, 102: 053106

    Article  Google Scholar 

  30. Gu W, Tang G-H, Tao W-Q. Thermal switch and thermal rectification enabled by near-field radiative heat transfer between three slabs. Int J Heat Mass Transf, 2015, 82: 429–434

    Article  Google Scholar 

  31. Iizuka H, Fan S. Rectification of evanescent heat transfer between dielectric-coated and uncoated silicon carbide plates. J Appl Phys, 2012, 112: 024304

    Article  Google Scholar 

  32. Chen K, Santhanam P, Sandhu S, et al. Heat-flux control and solidstate cooling by regulating chemical potential of photons in near-field electromagnetic heat transfer. Phys Rev B, 2015, 91: 134301

    Article  Google Scholar 

  33. Liu X L, Zhang Z M. High-performance electroluminescent refrigeration enabled by photon tunneling. Nano Energy, 2016, 26: 353–359

    Article  Google Scholar 

  34. Mulet J-P, Joulain K, Carminati R, et al. Enhanced radiative heat transfer at nanometric distances. Microscale Thermophys Eng, 2002, 6: 209–222

    Article  Google Scholar 

  35. Zheng Z, Xuan Y. Theory of near-field radiative heat transfer for stratified magnetic media. Int J Heat Mass Transf, 2011, 54: 1101–1110

    Article  MATH  Google Scholar 

  36. Biehs S A, Tschikin M, Ben-Abdallah P. Hyperbolic metamaterials as an analog of a blackbody in the near field. Phys Rev Lett, 2012, 109: 104301

    Article  Google Scholar 

  37. Guo Y, Cortes C L, Molesky S, et al. Broadband super-Planckian thermal emission from hyperbolic metamaterials. Appl Phys Lett, 2012, 101: 131106

    Article  Google Scholar 

  38. Liu X L, Zhang R Z, Zhang Z M. Near-field thermal radiation between hyperbolic metamaterials: Graphite and carbon nanotubes. Appl Phys Lett, 2013, 103: 213102

    Article  Google Scholar 

  39. Liu B, Shen S. Broadband near-field radiative thermal emitter/absorber based on hyperbolic metamaterials: Direct numerical simulation by the Wiener chaos expansion method. Phys Rev B, 2013, 87: 115403

    Article  Google Scholar 

  40. Liu X L, Zhang R Z, Zhang Z M. Near-field radiative heat transfer with doped-silicon nanostructured metamaterials. Int J Heat Mass Transf, 2014, 73: 389–398

    Article  Google Scholar 

  41. Chang J-Y, Basu S, Wang L. Indium tin oxide nanowires as hyperbolic metamaterials for near-field radiative heat transfer. J Appl Phys, 2015, 117: 054309

    Article  Google Scholar 

  42. Liu X L, Bright T J, Zhang Z M. Application conditions of effective medium theory in near-field radiative heat transfer between multilayered metamaterials. J Heat Transfer, 2014, 136: 092703

    Article  Google Scholar 

  43. Liu X L, Zhao B, Zhang Z M. Enhanced near-field thermal radiation and reduced Casimir stiction between doped-Si gratings. Phys Rev A, 2015, 91: 062510

    Article  Google Scholar 

  44. Kumar A, Low T, Fung K H, et al. Tunable light-matter interaction and the role of hyperbolicity in graphene-hBN system. Nano Lett, 2015, 15: 3172–3180

    Article  Google Scholar 

  45. Zhao B, Zhang Z M. Enhanced photon tunneling by surface plasmon-phonon polaritons in graphene/hBN heterostructures. J Heat Transfer, 2016, doi: 10.1115/1.4034793

    Google Scholar 

  46. Cortes C L, Newman W, Molesky S, et al. Quantum nanophotonics using hyperbolic metamaterials. J Opt, 2012, 14: 063001

    Article  Google Scholar 

  47. Biehs S-A, Rosa F S S, Ben-Abdallah P. Modulation of near-field heat transfer between two gratings. Appl Phys Lett, 2011, 98: 243102

    Article  Google Scholar 

  48. Rosa F S S, Dalvit D A R, Milonni P W. Casimir interactions for anisotropic magnetodielectric metamaterials. Phys Rev A, 2008, 78: 032117

    Article  Google Scholar 

  49. Mao Y D, Xu M T. Non-Fourier heat conduction in a thin gold film heated by an ultra-fast-laser. Sci China Tech Sci, 2015, 58: 638–649

    Article  Google Scholar 

  50. Da Y, Xuan Y. Perfect solar absorber based on nanocone structure surface for high efficiency solar thermoelectric generators. Sci China Tech Sci, 2015, 58: 19–28

    Article  Google Scholar 

  51. Wang K, He Y L, Cheng Z D. A design method and numerical study for a new type parabolic trough solar collector with uniform solar flux distribution. Sci China Tech Sci, 2014, 57: 531–540

    Article  Google Scholar 

  52. Gomez-Diaz J S, Tymchenko M, Alù A. Hyperbolic plasmons and topological transitions over uniaxial metasurfaces. Phys Rev Lett, 2015, 114: 233901

    Article  Google Scholar 

  53. Liu X L, Zhang Z M. Giant enhancement of nanoscale thermal radiation based on hyperbolic graphene plasmons. Appl Phys Lett, 2015, 107: 143114

    Article  Google Scholar 

  54. Francoeur M, Mengüç M P, Vaillon R. Near-field radiative heat transfer enhancement via surface phonon polaritons coupling in thin films. Appl Phys Lett, 2008, 93: 043109

    Article  Google Scholar 

  55. Basu S, Francoeur M. Maximum near-field radiative heat transfer between thin films. Appl Phys Lett, 2011, 98: 243120

    Article  Google Scholar 

  56. Liu X L, Zhang Z M. Near-field thermal radiation between metasurfaces. ACS Photon, 2015, 2: 1320–1326

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YiMin Xuan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Xuan, Y. Super-Planckian thermal radiation enabled by hyperbolic surface phonon polaritons. Sci. China Technol. Sci. 59, 1680–1686 (2016). https://doi.org/10.1007/s11431-016-0480-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-016-0480-9

Keywords

Navigation