Skip to main content
Log in

Femtosecond laser-based fabrication of a new model material to study fracture

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The ductile fracture process consists of the nucleation, growth and coalescence of voids in a material. Predictive models of ductility require a complete understanding of the coalescence event. However, coalescence occurs over very small strains and is therefore difficult to observe experimentally. We have addressed this by developing a new class of model material. It consists of femtosecond laser drilled holes and diffusion bonded metallic sheets, which can be mechanically tested in situ either by scanning electron microscopy (SEM) or by X-raycomputed tomography (XRCT). The fabrication steps are presented and the model material is characterized by optical and electron microscopy, nanoindentation and tomography. The heat affected zone around the laser holes is found to be harder than the unaffected material and consists of nano-scale grains. Finally we show that the coalescence event is well captured using both SEM and XRCT. The fabrication method is adaptable to a wide range of materials and enables one to produce 2D and 3D arrays of holes or cracks with controlled size, volume fraction and distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Babout, E. Maire, J.-Y. Buffière, R. Fougères, Acta Mater. 49, 2055 (2001)

    Article  Google Scholar 

  2. A.A. Benzerga, J. Mech. Phys. Solids 50, 1331 (2002)

    Article  MATH  ADS  Google Scholar 

  3. A. Borowiec, D.M. Bruce, D.T. Cassidy, H.K. Haugen, Appl. Phys. Lett. 83, 225 (2003)

    Article  ADS  Google Scholar 

  4. A. Borowiec, M. Couillard, G.A. Botton, H.K. Haugen, Appl. Phys. A 79, 1887 (2004)

    ADS  Google Scholar 

  5. A. Borowiec, H.K. Haugen, Appl. Phys. A 79, 521 (2004)

    Article  ADS  Google Scholar 

  6. D. Broek, Eng. Fract. Mech. 5, 55 (1973)

    Article  Google Scholar 

  7. J.-Y. Buffière, E. Maire, P. Cloetens, G. Lormand, R. Fougères, Acta Mater. 47, 1613 (1999)

    Article  Google Scholar 

  8. B.N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, A. Tünnermann, Appl. Phys. A 63, 109 (1996)

    ADS  Google Scholar 

  9. T.B. Cox, J.R. Low Jr., Metall. Trans. 5, 1457 (1974)

    Google Scholar 

  10. J. Gammage, D. Wilkinson, Y. Brechet, D. Embury, Acta Mater. 52, 5255 (2004)

    Article  Google Scholar 

  11. A.L. Gurson, J. Eng. Mater. Technol. 99 (1977)

  12. S. Jia, G.L. Povirk, Int. J. Solids Struct. 39, 2533 (2002)

    Article  MATH  Google Scholar 

  13. R. Le Harzic, N. Huot, E. Audouard, C. Jonin, P. Laporte, S. Valette, A. Fraczkiewicz, R. Fortunier, Appl. Phys. Lett. 80, 3886 (2002)

    Article  ADS  Google Scholar 

  14. A. Luft, U. Franz, A. Emsermann, J. Kaspar, Appl. Phys. A 63, 93 (1996)

    ADS  Google Scholar 

  15. P.E. Magnusen, E.M. Dubensky, D.A. Koss, Acta Metall. 36, 1503 (1988)

    Article  Google Scholar 

  16. F.A. McClintock, J. Appl. Mech. 35, 363 (1968)

    Google Scholar 

  17. S. Nagaki, Y. Nakayama, T. Abe, Int. J. Mech. Sci. 40, 215 (1998)

    Article  Google Scholar 

  18. S. Nolte, C. Momma, G. Kamlage, A. Ostendorf, C. Fallnich, F. von Alvensleben, H. Welling, Appl. Phys. A 68, 563 (1999)

    Article  ADS  Google Scholar 

  19. T. Pardoen, J.W. Hutchinson, J. Mech. Phys. Solids 48, 2467 (2000)

    Article  MATH  ADS  Google Scholar 

  20. J.R. Rice, D.M. Tracey, J. Mech. Phys. Solids 17, 201 (1969)

    Article  ADS  Google Scholar 

  21. J. Thøgersen, A. Borowiec, H.K. Haugen, F.E. McNeill, I.M. Stronach, Appl. Phys. A 73, 361 (2001)

    Article  ADS  Google Scholar 

  22. P.F. Thomason, Ductile Fracture of Metals (Pergamon Press, Oxford, 1990)

    Google Scholar 

  23. P.F. Thomason, J. Instrum. Met. 96, 360 (1968)

    Google Scholar 

  24. K. Uesugi, Y. Suzuki, N. Yagi, A. Tsuchiyama, T. Nakano, Nucl. Instrum. Methods Phys. Res. A 467468, 853 (2001)

    Article  Google Scholar 

  25. A. Weck, D. Wilkinson, H. Toda, E. Maire, Adv. Eng. Mater. 8, 469 (2006)

    Article  Google Scholar 

  26. A.E. Wynne, B.C. Stuart, Appl. Phys. A 76, 373 (2003)

    Article  ADS  Google Scholar 

  27. X. Zhang, H. Wang, X.H. Chen, L. Lu, K. Lu, R.G. Hoagland, A. Misra, Appl. Phys. Lett. 88, 173116 (2006)

    Article  ADS  Google Scholar 

  28. X. Zhu, D.M. Villeneuve, A.Yu. Naumov, S. Nikumb, P.B. Corkum, Appl. Surf. Sci. 152, 138 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Weck.

Additional information

PACS

62.20.Mk; 62.25.+g; 79.20.Ds

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weck, A., Crawford, T., Borowiec, A. et al. Femtosecond laser-based fabrication of a new model material to study fracture. Appl. Phys. A 86, 55–61 (2007). https://doi.org/10.1007/s00339-006-3730-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-006-3730-x

Keywords

Navigation