Skip to main content
Log in

Femtosecond pulsed laser ablation of 3CSiC thin film on silicon

  • Regular Paper
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A femtosecond pulsed Ti:sapphire laser (pulse width=120 fs, wavelength=800 nm, repetition rate=1 kHz) was employed to perform laser ablation of 1-μm-thick silicon carbide (3CSiC) films grown on silicon substrates. The threshold fluence and ablation rate, useful for the micromachining of the 3CSiC films, were experimentally determined. The material removal mechanisms vary depending on the applied energy fluence. At high laser fluence, a thermally dominated process such as melting, boiling and vaporizing of single-crystal SiC occurs. At low laser fluence, the ablation is a defect-activation process via incubation, defect accumulation, formation of nanoparticles and final vaporization of boundaries. The defect-activation process reduces the ablation threshold fluence and enhances lateral and vertical precision as compared to the thermally dominated mechanism. Helium, as an assistant gas, plays a major role in improving the processing quality and ablation rate of SiC thin films due to its inertness and high first ionization energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Mehregany, C.A. Zorman, N. Rajan, C.H. Wu: Proc. IEEE 86, 1594 (1998)

    Google Scholar 

  2. M. Mehregany, C.A. Zorman: Thin Solid Films 355356, 518 (1999)

  3. J.X. Zhao, B. Huttner, A. Menschig: Proc. SPIE 3618, 114 (1999)

    Google Scholar 

  4. B.N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, A. Tünnermann: Appl. Phys. A 63, 109 (1996)

    Google Scholar 

  5. K. Ozono, M. Obara, A. Usui, H. Sunakawa: Opt. Commun. 189, 103 (2001)

    Google Scholar 

  6. P.P. Pronko, S.K. Dutta, J. Squier, J.V. Rudd, D. Du, G. Mouron: Opt. Commun. 114, 106 (1995)

    Google Scholar 

  7. X. Liu, D. Du, G. Mourou: IEEE J. Quant. Electron. QE-33, 1706 (1997)

  8. X. Zhu, D.M. Villeneuve, A.Y. Nauma, S. Nikumb, P.B. Corkum: Appl. Surf. Sci. 152, 138 (1999)

    Google Scholar 

  9. D. Ashkenasi, M. Lorenz, R. Stoian, A. Rosenfeld: Appl. Surf. Sci. 150, 101 (1999)

    Google Scholar 

  10. J. Bonse, P. Rudolph, J. Krüger, S. Baudach, W. Kautek: Appl. Surf. Sci. 154155, 659 (2000)

    Google Scholar 

  11. S. Ameer-Beg, W. Perrie, S. Rathbone, J. Wright, W. Weaver, H. Champoux: Appl. Surf. Sci. 127129, 875 (1998)

    Google Scholar 

  12. C.A. Zorman, A.J. Fleischman, A.S. Dewa, M. Mehregany, C. Jacob, P. Pirouz: J. Appl. Phys. 78, 5136 (1995)

    Google Scholar 

  13. Z. Guosheng, P.M. Fauchet, A.E. Siegman: Phys. Rev. B 26, 5366 (1982)

    Google Scholar 

  14. J.F. Young, J.E. Sipe, H.M. Van Driel: Phys. Rev. B 30, 2001 (1984)

    Google Scholar 

  15. J. Bonse, J.M. Wrobel, J. Krüger, W. Kautek: Appl. Phys. A 72, 89 (2001)

    Google Scholar 

  16. J. Bonse, S. Baudach, J. Krüger, M. Lenzner: Appl. Phys. A 74, 19 (2002)

    Google Scholar 

  17. I.W. Boyd: Laser Processing of Thin Films and Microstructures (Springer-Verlag, Berlin, Heidelberg 1987) p. 36

  18. G.L. Harris: Properties of Silicon Carbide (Inst. Electrical Eng., London 1995)

  19. J. Sun, J.P. Longtin: Therm. Sci. Eng. 7, 81 (1999). The first ionization energy (kJ/mol) of the following elements are: H, 1312.0; He, 23272.3; N, 1402.3; O, 1313.9; and C, 1086.5. http://www.webelements.com/webelements/properties/

    MATH  Google Scholar 

  20. J.M. Liu: Opt. Lett. 7, 196 (1982)

    Google Scholar 

  21. P.L. Liu, R. Yen, N. Bloembergen, R.T. Hodgson: Appl. Phys. Lett. 34, 864 (1979)

    Google Scholar 

  22. A. Cavalleri, K. Sokolowski-Tinten, J. Bialkowski, M. Schreiner, D. Von Der Linde: J. Appl. Phys. 85, 3301 (1999)

    Google Scholar 

  23. T. Yoshida, S. Takeyama, Y. Yamada, K. Mutoh: Appl. Phys. Lett. 68, 1772 (1996)

    Google Scholar 

  24. T. Makimura, T. Mizuta, K. Murakami: Appl. Phys. Lett. 76, 1401 (2000)

    Google Scholar 

  25. T. Makimura, T. Mizuta, K. Murakami: Appl. Phys. A 69, S213 (1999)

  26. Z. Paszti, G. Peto, Z.E. Horvath, A. Karacs: Appl. Surf. Sci. 168, 114 (2000)

    Google Scholar 

  27. S. Facsko, T. Bobek, H. Kurz, T. Dekorsy, S. Kyrata, R. Cremer: Appl. Phys. Lett. 80, 130 (2002)

    Google Scholar 

  28. H.W.K. Tom, G.D. Aumiller, C.H. Brito-Cruz: Phys. Rev. Lett. 60, 1438 (1988)

    Google Scholar 

  29. S.V. Govorkov, I.L. Shumay, W. Rudolph, T. Schröder: Opt. Lett. 16, 1013 (1991)

    Google Scholar 

  30. L.Y. Sadler, M. Shamsuzzoha: J. Mater. Res. 12, 147 (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Dong.

Additional information

PACS

79.20.Ds; 42.62.Cf; 42.70.Qs; 61.72; 61.46

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dong, Y., Molian, P. Femtosecond pulsed laser ablation of 3CSiC thin film on silicon. Appl Phys A 77, 839–846 (2003). https://doi.org/10.1007/s00339-003-2103-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-003-2103-y

Keywords

Navigation