Skip to main content

Advertisement

Log in

Patterns of connectivity among populations of a coral reef fish

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

Knowledge of the patterns and scale of connectivity among populations is essential for the effective management of species, but our understanding is still poor for marine species. We used otolith microchemistry of newly settled bicolor damselfish (Stegastes partitus) in the Mesoamerican Reef System (MRS), Western Caribbean, to investigate patterns of connectivity among populations over 2 years. First, we assessed spatial and temporal variability in trace elemental concentrations from the otolith edge to make a ‘chemical map’ of potential source reef(s) in the region. Significant otolith chemical differences were detected at three spatial scales (within-atoll, between-atolls, and region-wide), such that individuals were classified to locations with moderate (52 % jackknife classification) to high (99 %) accuracy. Most sites at Turneffe Atoll, Belize showed significant temporal variability in otolith concentrations on the scale of 1–2 months. Using a maximum likelihood approach, we estimated the natal source of larvae recruiting to reefs across the MRS by comparing ‘natal’ chemical signatures from the otolith of recruits to the ‘chemical map’ of potential source reef(s). Our results indicated that populations at both Turneffe Atoll and Banco Chinchorro supply a substantial amount of individuals to their own reefs (i.e., self-recruitment) and thus emphasize that marine conservation and management in the MRS region would benefit from localized management efforts as well as international cooperation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Notes

  1. Reference to trade names does not imply endorsement by the National Marine Fisheries Service, NOAA.

References

  • Almany GR, Berumen ML, Thorrold SR, Planes S, Jones GP (2007) Local replenishment of coral reef fish populations in a marine reserve. Science 316:742–744

    Article  PubMed  CAS  Google Scholar 

  • Bath GE, Thorrold SR, Jones CM, Campana SE, McLaren JW, Lam JWH (2000) Strontium and barium uptake in aragonitic otoliths of marine fish. Geochim Cosmochim Acta 64:1705–1714

    Article  CAS  Google Scholar 

  • Becker BJ, Levin LA, Fodrie FJ, McMillan PA (2007) Complex larval connectivity patterns among marine invertebrate populations. Proc Natl Acad Sci USA 104:3267–3272

    Article  PubMed  CAS  Google Scholar 

  • Black KP (1993) The relative importance of local retention and inter-reef dispersal of neutrally buoyant material on coral reefs. Coral Reefs 12:43–53

    Article  Google Scholar 

  • Black KP, Moran PJ (1991) Influence of hydrodynamics on the passive dispersal and initial recruitment of larvae of Acanthaster planci (Echinodermata: Asteroidea) on the Great Barrier Reef. Mar Ecol Prog Ser 69:55–65

    Article  Google Scholar 

  • Black KP, Gay SL, Andrews JC (1990) Residence times of neutrally-buoyant matter such as larvae, sewage or nutrients on coral reefs. Coral Reefs 9:105–114

    Article  Google Scholar 

  • Black KP, Moran PJ, Hammond LS (1991) Numerical models show coral reefs can be self-seeding. Mar Ecol Prog Ser 74:1–11

    Article  Google Scholar 

  • Botsford L, Brumbaugh D, Grimes C, Kellner J, Largier J, O’Farrell M, Ralston S, Soulanille E, Wespestad V (2009) Connectivity, sustainability, and yield: bridging the gap between conventional fisheries management and marine protected areas. Rev Fish Biol Fish 19:69–95

    Google Scholar 

  • Bradbury IR, Campana SE, Bentzen P (2008) Otolith elemental composition and adult tagging reveal spawning site fidelity and estuarine dependency in rainbow smelt. Mar Ecol Prog Ser 368:255–268

    Article  Google Scholar 

  • Brophy D, Jeffries TE, Danilowicz BS (2004) Elevated manganese concentrations at the cores of clupeid otoliths: possible environmental, physiological, or structural origins. Mar Biol 144:779–786

    Article  CAS  Google Scholar 

  • Brown R, Severin KP (1999) Elemental distribution within polymorphic inconnu (Stenodus leucichthys) otoliths is affected by crystal structure. Can J Fish Aquat Sci 56:1898–1903

    CAS  Google Scholar 

  • Buckley RM, West JE, Doty DC (1994) Internal micro-tag systems for marking juvenile reef fishes. Bull Mar Sci 55:848–857

    Google Scholar 

  • Campana SE (1999) Chemistry and composition of fish otoliths: pathways, mechanisms and applications. Mar Ecol Prog Ser 188:263–297

    Article  CAS  Google Scholar 

  • Chittaro PM, Hogan JD, Gagnon J, Fryer B, Sale PF (2006) In situ experiment of ontogenetic variability in the otolith chemistry of Stegastes partitus. Mar Biol 149:1227–1235

    Article  CAS  Google Scholar 

  • Chittaro PM, Finley R, Levin P (2009) Spatial and temporal patterns in the contribution of fish from their nursery habitats. Oecologia 160:49–61

    Article  PubMed  Google Scholar 

  • Christie MR, Johnson DW, Stallings CD, Hixon MA (2010a) Self-recruitment and sweepstakes reproduction amid extensive gene flow in a coral reef fish. Mol Ecol 19:1042–1057

    Article  PubMed  Google Scholar 

  • Christie MR, Tissot BN, Albins MA, Beets JP, Yanli J, Delisse MO, Thompson SE, Hixon MA (2010b) Larval connectivity in an effective network of marine protected areas. PLoS ONE 5:e15715. doi:10.1371/journal.pone.0015715

    Article  PubMed  CAS  Google Scholar 

  • Cowen RK, Lwiza KMM, Sponaugle S, Paris CB, Olson DB (2000) Connectivity of marine populations: open or closed. Science 287:857–859

    Article  PubMed  CAS  Google Scholar 

  • Crowe SA, Fryer BJ, Samson IA, Gagnon JE (2003) Precise isotope ratio determination of common Pb using quadrupole LA-ICP-MS with optimized laser sampling conditions and a robust mixed-gas plasma. J Anal At Spectrom 18:1331–1338

    Article  CAS  Google Scholar 

  • de Pontual H, Geffen AJ (2002) Otolith microchemistry. In: Panfili J, de Pontual H, Troadec H, Wright PJ (eds) Manual of fish sclerochronology. Ifremer, Plouzane, France, pp 243–303

    Google Scholar 

  • Doherty PJ, Williams DMcB (1988) The replenishment of coral reef fish populations. Oceanogr Mar Biol Annu Rev 26:487–551

    Google Scholar 

  • Dufour V, Pierre C, Rancher J (1998) Stable isotopes in fish otoliths discriminate between lagoonal and oceanic residents of Taiaro Atoll (Tuamotu Archipelago, French Polynesia). Coral Reefs 17:23–28

    Article  Google Scholar 

  • Eckert GL (2003) Effects of the planktonic period on marine population fluctuations. Ecology 84:372–383

    Article  Google Scholar 

  • Elsdon TS, Gillanders BM (2003) Relationship between water and otolith elemental concentrations in juvenile black bream Acanthopagrus butcheri. Mar Ecol Prog Ser 260:263–272

    Article  CAS  Google Scholar 

  • Elsdon TS, Gillanders BM (2005) Consistency of patterns between laboratory experiments and field collected fish in otolith chemistry: an example and applications for salinity reconstructions. Mar Freshw Res 56:609–617

    Article  CAS  Google Scholar 

  • Elsdon TS, Wells BK, Campana SE, Gillanders BM, Jones CM, Limburg KE, Secor DH, Thorrold SR, Walther BD (2008) Otolith chemistry to describe movements and life-history parameters of fishes: hypotheses, assumptions, limitations and inferences. Oceanogr Mar Biol Annu Rev 46:297–330

    Article  Google Scholar 

  • Fogarty MJ, Botsford LW (2007) Population connectivity and spatial management of marine fishes. Oceanography 20:112–123

    Article  Google Scholar 

  • Fowler AJ, Campana SE, Jones CM, Thorrold SR (1995) Experimental assessment of the effect of temperature and salinity on elemental composition of otoliths using laser ablation ICPMS. Can J Fish Aquat Sci 52:1431–1441

    Article  Google Scholar 

  • Fryer BJ, Jackson SE, Longerich HP (1995) The design, operation and role of the laser-ablation microprobe coupled with an inductively coupled plasma-mass spectrometer (LAM-ICP-MS) in the earth sciences. Canadian Minerology 33:303–312

    CAS  Google Scholar 

  • Gauldie RW (1996) Effects of temperature and vaterite replacement on the chemistry of metal ions in the otoliths of Oncorhynchus tshawytscha. Can J Fish Aquat Sci 53:2015–2016

    Article  CAS  Google Scholar 

  • Geffen AJ, Pearce NJG, Perkins WT (1998) Metal concentrations in fish otoliths in relation to body composition after laboratory exposure to mercury and lead. Mar Ecol Prog Ser 165:235–245

    Article  CAS  Google Scholar 

  • Gibson J, Carter J (2003) The reefs of Belize. In: Cortes J (ed) Latin American coral reefs. Elsevier Science, Amsterdam, pp 171–202

    Chapter  Google Scholar 

  • Gillanders BM (2002) Temporal and spatial variability in elemental composition of otoliths: implications for determining stock identity and connectivity of populations. Can J Fish Aquat Sci 59:669–679

    Article  CAS  Google Scholar 

  • Hamer PA, Jenkins GP, Gillanders BM (2003) Otolith chemistry of juvenile snapper Pagrus auratus in Victorian waters: natural chemical tags and their temporal variation. Mar Ecol Prog Ser 263:261–273

    Article  CAS  Google Scholar 

  • Hamer PA, Jenkins GP, Gillanders BM (2005) Chemical tags in otoliths indicate the importance of local and distant settlement areas to populations of a temperate sparid, Pagrus Auratus. Can J Fish Aquat Sci 62:623–630

    Article  Google Scholar 

  • Hepburn RI, Sale PF, Dixon B, Heath DD (2009) Genetic structure of juvenile cohorts of bicolor damselfish (Stegastes partitus) along the Mesoamerican barrier reef: chaos through time. Coral Reefs 28:277–288

    Article  Google Scholar 

  • Hogan JD, Thiessen RJ, Heath DD (2010) Variability in connectivity indicated by chaotic genetic patchiness within and among populations of a marine fish. Mar Ecol Prog Ser 417:263–275

    Article  Google Scholar 

  • Hogan JD, Thiessen RJ, Sale PF, Heath DD (2012) Local retention, dispersal and fluctuating connectivity among populations of a coral reef fish. Oecologia. doi:10.1007/s00442-011-2058-1

    PubMed  Google Scholar 

  • Holland MD, Hastings A (2008) Strong effect of dispersal network structure on ecological dynamics. Nature 456:792–794

    Article  PubMed  CAS  Google Scholar 

  • Hutchings JA (2000) Collapse and recovery of marine fishes. Nature 406:882–885

    Article  PubMed  CAS  Google Scholar 

  • Jackson JBC, Kirby MX, Berger WH, Bjorndal KA, Botsford LW, Bourque BJ, Bradbury RH, Cooke R, Erlandson J, Estes JA, Hughes TP, Kidwell S, Lange CP, Lenihan HS, Pandolfi JM, Peterson CH, Steneck RS, Tegner MJ, Warner RR (2001) Historical overfishing and the recent collapse of coastal ecosystems. Science 293:629–637

    Article  PubMed  CAS  Google Scholar 

  • Jagielo TH (1990) Movement of tagged lingcod Ophiodon elongatus at Neah Bay, Washington. Fish Bull 88:815–820

    Google Scholar 

  • Jones GP, Millcich MJ, Emsile MJ, Lunow C (1999) Self recruitment in a coral reef population. Nature 402:802–804

    Article  CAS  Google Scholar 

  • Jones GP, Planes S, Thorrold SR (2005) Coral reef fish larvae settle close to home. Curr Biol 15:1314–1318

    Article  PubMed  CAS  Google Scholar 

  • Jordan-Dahlgren E, Rodriguez-Martinez RE (2003) The Atlantic coral reefs of Mexico. In: Cortes J (ed) Latin American coral reefs. Elsevier Science, Amsterdam, pp 131–158

    Chapter  Google Scholar 

  • Kalish JM (1991) Determinants of otolith chemistry: seasonal variation in the composition of blood plasma, endolymph and otoliths of bearded rock cod Pseudophycis barbatus. Mar Ecol Prog Ser 74:137–159

    Article  CAS  Google Scholar 

  • Kingsford M, Hughes J, Patterson H (2009) Otolith chemistry of the non-dispersing reef fish Acanthochromis polyacanthus: cross-shelf patterns from the central Great Barrier Reef. Mar Ecol Prog Ser 377:279–288

    Article  CAS  Google Scholar 

  • Larson RJ, Julian RM (1999) Spatial and temporal genetic patchiness in marine populations and their implications for fisheries management. Calif Coop Ocean Fish Invest Rep 40:94–99

    Google Scholar 

  • Leis JM (2002) Pacific coral-reef fishes: the implications of behaviour and ecology of larvae for biodiversity and conservation, and a reassessment of the open population paradigm. Environ Biol Fish 65:199–208

    Article  Google Scholar 

  • Ludsin SA, Fryer BJ, Gagnon JE (2006) Comparison of solution-based versus laser ablation inductively coupled plasma mass spectrometry for analysis of larval fish otolith microelemental composition. Trans Am Fish Soc 135:218–231

    Article  Google Scholar 

  • Millar RB (1987) Maximum likelihood estimation of mixed stock fishery composition. Can J Fish Aquat Sci 44:583–590

    Article  Google Scholar 

  • Millar RB (1990a) A versatile computer program for mixed stock fishery composition estimation. Can Tech Rep Fish Aquat Sci 1753:iii+29p

    Google Scholar 

  • Millar RB (1990b) Comparison of methods for estimating mixed stock fishery composition. Can J Fish Aquat Sci 47:2235–2241

    Article  Google Scholar 

  • Milton DA, Chenery SR (2001) Sources and uptake of trace metals in otoliths of juvenile barramundi (Lates calcarifer). J Exp Mar Biol Ecol 264:47–65

    Article  CAS  Google Scholar 

  • Mora C, Sale PF (2002) Are populations of coral reef fish open or closed? Trends Ecol Evol 17:422–429

    Article  Google Scholar 

  • Myrberg AA (1972) Ethology of the bicolor damselfish, Eupomacentrus partitus: a comparative analysis of laboratory and field behaviour. Anim Behav Monogr 5:197–283

    Article  Google Scholar 

  • Nemeth RS (1998) The effect of natural variation in substrate architecture on the survival of juvenile bicolor damselfish. Environ Biol Fish 53:129–141

    Article  Google Scholar 

  • Nicholson WR (1978) Movements and population structure of Atlantic Menhaden by tag returns. Estuaries 1:141–150

    Article  Google Scholar 

  • Otake T, Ishii T, Nakahara M, Nakamura R (1994) Drastic changes in otolith strontium/calcium ratios in leptocephali and glass eels of Japanese eel Anguilla japonica. Mar Ecol Prog Ser 112:189–193

    Article  CAS  Google Scholar 

  • Paris CB, Cowen RK (2004) Direct evidence of a biophysical retention mechanism for coral reef fish larvae. Limnol Oceanogr 49:1964–1979

    Article  Google Scholar 

  • Patterson HM, Kingsford MJ, McCulloch MT (2004) Elemental signatures of Pomacentrus coelestis otoliths at multiple spatial scales on the Great Barrier Reef, Australia. Mar Ecol Prog Ser 270:229–239

    Article  Google Scholar 

  • Patterson HM, Kingsford MJ, McCulloch MT (2005) Resolution of the early life history of a reef fish using otolith chemistry. Coral Reefs 24:222–229

    Article  Google Scholar 

  • Planes S, Jones GP, Thorrold SR (2009) Larval dispersal connects fish populations in a network of marine protected areas. Proc Natl Acad Sci USA 106:5693–5697

    Article  PubMed  CAS  Google Scholar 

  • Purcell JFH, Cowen RK, Hughes CR, Williams DA (2009) Population structure in a common Caribbean coral-reef fish: implications for larval dispersal and early life-history traits. J Fish Biol 74:403–417

    Article  PubMed  CAS  Google Scholar 

  • Robertson DR, Green DG, Victor BC (1988) Temporal coupling of production and recruitment of larvae of a Caribbean reef fish. Ecology 69:370–381

    Article  Google Scholar 

  • Saenz-Agudelo P, Jones GP, Thorrold SR, Planes S (2012) Patterns and persistence of larval retention and connectivity in a marine fish population. Mol Ecol. doi:10.1111/j.1365-294X.2012.05726.x

    Google Scholar 

  • Salas E, Molina-Urena H, Walter RP, Heath DD (2010) Local and regional genetic connectivity in a Caribbean coral reef fish. Mar Biol 157:437–445

    Article  Google Scholar 

  • Sale PF (1980) Assemblages of fish on patch reefs—predictable or unpredictable? Environ Biol Fish 5:234–249

    Article  Google Scholar 

  • Sale PF (1991) Habitat structure and recruitment in coral reef fishes. In: Usher MB (ed) Habitat structure: the physical arrangement of objects in space. Chapman & Hall, London, pp 197–210

    Chapter  Google Scholar 

  • Sale PF, Cowen RK, Danilowicz BS, Jones GP, Kritzer JP, Lindeman KC, Planes S, Polunin NVC, Russ GR, Sadovy YJ, Steneck RS (2005) Critical science gaps impede use of no-take fishery reserves. Trends Ecol Evol 20:74–80

    Article  PubMed  Google Scholar 

  • Schaffler J, Reiss C, Jones C (2009) Spatial variation in otolith chemistry of Atlantic croaker larvae in the Mid-Atlantic Bight. Mar Ecol Prog Ser 382:185–195

    Article  Google Scholar 

  • Soto I, Andrefouet S, Hu C, Muller-Karger F, Wall C, Sheng J, Hatcher B (2009) Physical connectivity in the Mesoamerican Barrier Reef System inferred from 9 years of ocean color observations. Coral Reefs 28:415–425

    Article  Google Scholar 

  • StatSoft, Inc. (2001) STATISTICA (data analysis software system), version 6. www.statsoft.com. Tulsa, OK

  • Swearer SE, Shima JS (2010) Regional variation in larval retention and dispersal drives recruitment patterns in a temperate reef fish. Mar Ecol Prog Ser 417:229–236

    Article  Google Scholar 

  • Swearer SE, Caselle JE, Lea DW, Warner RR (1999) Larval retention and recruitment in an island population of a coral-reef fish. Nature 402:799–802

    Article  CAS  Google Scholar 

  • Swearer SE, Forrester GE, Steele MA, Brooks AJ, Lea DW (2003) Spatio-temporal and interspecific variation in otolith trace-elemental fingerprints in a temperate estuarine fish assemblage. Estuar Coast Shelf Sci 56:1111–1123

    Article  CAS  Google Scholar 

  • Tang LQ, Sheng JY, Hatcher BG, Sale PF (2006) Numerical study of circulation, dispersion, and hydrodynamic connectivity of surface waters on the Belize shelf. J Geophys Res C 111(C1). (DOI C01003)

  • Thorrold SR, Jones CM, Swart PK, Targett TE (1998) Accurate classification of juvenile weakfish Cynoscion regalis to estuarine nursery areas based on chemical signatures in otoliths. Mar Ecol Prog Ser 173:253–265

    Article  CAS  Google Scholar 

  • Thorrold SR, Latkoczy C, Swart PK, Jones CM (2001) Natal homing in a marine fish metapopulation. Science 291:297–299

    Article  PubMed  CAS  Google Scholar 

  • Thorrold SR, Jones GP, Hellberg ME, Burton RS, Swearer SE, Neigel JE, Morgan SG, Warner RR (2002) Quantifying larval retention and connectivity in marine populations with artificial and natural markers. Bull Mar Sci 70:291–308

    Google Scholar 

  • Toole CL, Markle DF, Harris PM (1993) Relationships between otolith microstructure, microchemistry, and early life history events in Dover sole, Microstomus pacificus. Fish Bull 91:732–753

    Google Scholar 

  • Valles H, Sponaugle S, Oxenford HA (2001) Larval supply to a marine reserve and adjacent fished area in the Soufriere Marine Management Area, St Lucia, West Indies. J Fish Biol 59:157–177

    Article  Google Scholar 

  • van Achterbergh E, Ryan C, Jackson S, Griffin W (2001) Data reduction software for LA-ICPMS. In: Sylvester P (ed) Laser-ablation-ICPMS in the earth sciences: principles and applications. Mineralogy Association of Canada, Ottawa, pp 239–343

    Google Scholar 

  • Villegas-Sanchez CA, Rivera-Madrid R, Arias-Gonzalez JE (2010) Small scale genetic connectivity of bicolor damselfish (Stegastes partitus) recruits in Mexican Caribbean reefs. Coral Reefs 29:1023–1033

    Article  Google Scholar 

  • Volk EC, Blakley A, Schroder SL, Kuehner SM (2000) Otolith chemistry reflects migratory characteristics of Pacific salmonids: using otolith core chemistry to distinguish maternal associations with sea and freshwaters. Fish Res 46:251–266

    Article  Google Scholar 

  • Walther BD, Thorrold SR (2010) Limited diversity in natal origins of immature anadromous fish during ocean residency. Can J Fish Aquat Sci 67:1699–1707

    Article  Google Scholar 

  • Walther BD, Kingsford MJ, O’Callaghan MD, McCulloch MT (2010) Interactive effects of ontogeny, food ration and temperature on elemental incorporation in otoliths of a coral reef fish. Environ Biol Fish 89:441–451

    Article  Google Scholar 

  • Wellington GM, Victor BC (1989) Planktonic larval duration of one hundred species of Pacific and Atlantic damselfishes (Pomacentridae). Mar Biol 101:557–567

    Article  Google Scholar 

  • Williams DMcB, Wolanski W, Andrews JC (1984) Transport mechanisms and the potential movement of planktonic larvae in the central region of the Great Barrier Reef. Coral Reefs 3:229–236

    Article  Google Scholar 

  • Wilson DT, Meekan MG (2002) Growth-related advantages for survival to the point of replenishment in the coral reef fish Stegastes partitus (Pomacentridae). Mar Ecol Prog Ser 231:247–260

    Article  Google Scholar 

  • Yamanaka KL, Richards LJ (1993) Movements of transplanted lingcod, Ophiodon elongatus, determined by ultrasonic telemetry. Fish Res 91:582–587

    Google Scholar 

Download references

Acknowledgments

We thank P. Sale, J. Samhouri, N. Tolimieri, R. Zabel, and three anonymous reviewers for their constructive comments. Special thanks to P. Usseglio, C. Mora, C. Nolan, J.P. Kritzer, B. Fryer, J. Gagnon, T. Rodriguez, E. Garcia, and the staff at University of Belize, Institute of Marine Studies, Calabash, for field collections and logistical support. This study was supported by a grant from the Natural Sciences and Engineering Research Council Collaborative Research Opportunity (Grant # 227965) awarded to P. Sale, an Ontario Graduate Scholarship awarded to P. Chittaro, and an Ontario Graduate Scholarship for Science and Technology awarded to J.D. Hogan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. M. Chittaro.

Additional information

Communicated by Biology Editor Dr. Glenn Almany

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chittaro, P.M., Hogan, J.D. Patterns of connectivity among populations of a coral reef fish. Coral Reefs 32, 341–354 (2013). https://doi.org/10.1007/s00338-012-0990-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-012-0990-0

Keywords

Navigation