Skip to main content
Log in

Optional inferior vena caval filters: where are we now?

  • Vascular-Interventional
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

With the advent of newer optional/retrievable inferior vena caval filters, there has been a rise in the number of filters inserted globally. This review article examines the currently available approved optional filter models, outlines the clinical indications for filter insertion and examines the expanding indications. Additionally, the available evidence behind the use of optional filters is reviewed, the issue of anticoagulation is discussed and possible future filter developments are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hyers TM, Hull RD, Weg JG (1995) Antithrombotic therapy for venous thromboembolic disease. Chest 108(Suppl):335S–351S

    Article  PubMed  CAS  Google Scholar 

  2. Becker DM, Philbrick JT, Selby JB (1992) Inferior vena cava filters: indication, sefety, effectiveness. Arch Intern Med 152:1985–1994

    Article  PubMed  CAS  Google Scholar 

  3. Trousseau A (1868) Phlegmatia alba dolens. In: Clinique médicale de l’Hôtel-Dieu de Paris, 3rd edn, vol 3. J.B. Baillière, Paris, pp 652–695

  4. Mobin-Uddin K, Smith PE, Martinez LO, Lombardo CR, Jude JR (1967) A vena caval filter for the prevention of pulmonary embolus. Surg Forum 18:209–211

    Google Scholar 

  5. Greenfield LJ, McCurdy JR, Brown PP, Elkins RC (1973) A new vena caval filter permitting continued flow and resolution of emboli. Surgery 73:599–606

    PubMed  CAS  Google Scholar 

  6. Tadavarthy SM, Castaneda-Zuniga W, Salomonowitz E et al (1984) Kimray-Greenfield vena cava filter: percutaneous introduction. Radiology 151:525–526

    PubMed  CAS  Google Scholar 

  7. PREPIC Study Group (1985) Eight year follow-up of patients with permanent vena cava filters in the prevention of pulmonary embolism. Circulation 112:416–422

    Article  Google Scholar 

  8. Decousus H, Leizorovicz A, Parent F et al (1998) A clinical trial of vena caval filters in the prevention of pulmonary embolism in patients with proximal deep-vein thrombosis. N Engl J Med 338:409–415

    Article  PubMed  CAS  Google Scholar 

  9. Stein PD, Kayali F, Olson RE (2004) Twenty-one-year trends in the use of inferior vena cava filters. Arch Intern Med 164:1541–1545

    Article  PubMed  Google Scholar 

  10. Magnant JG, Walsh DB, Juravsky LI, Cronenwett JL (1992) Current use of inferior vena cava filters. J Vasc Surg 16:701–706

    Article  PubMed  CAS  Google Scholar 

  11. Peterson L (2003) Inferior vena cava filters. Trends Med Oct 2003

  12. Walsh DB, Birkmeyer JD, Barrett JA, Kniffin WB, Cronenwett JL, Baron JA (1995) Use of inferior vena cava filters in the Medicare population. Ann Vasc Surg 9:483–487

    Article  PubMed  CAS  Google Scholar 

  13. Greenfield LJ, Proctor MC (1996) Current indications for caval interruption: should they be liberalized in view of improving technology? Semin Vasc Surg 9:50–58

    PubMed  CAS  Google Scholar 

  14. De Gregorio M, Gimeno M, Tobio R et al (2001) Animal experience in the Günther tulip retrievable inferior vena caval filter. Cardiovasc Intervent Radiol 24:413–417

    Article  PubMed  Google Scholar 

  15. Darcy MD, Smith TP, Hunter DW, Castaneda-Zuniga W, Lung G, Amplatz K (1996) Short-term prophylaxis of pulmonary embolism by using a retrievable vena cava filter. AJR Am J Roentgenol 147:836–838

    Google Scholar 

  16. McCowan TC, Ferris EJ, Carver DK, Baker ML (1990) Amplatz vena cava filter: clinical experience in 30 patients. AJR Am J Roentgenol 155:177–181

    PubMed  CAS  Google Scholar 

  17. Binkert CA, Bansal A, Gates JD (2005) Inferior vana cava filter removal after 317-day implantation. J Vasc Interv Radiol 16:1156–1158

    Google Scholar 

  18. Terhaar OA, Lyon SM, Given MF, Foster AE, McGrath FP, Lee MJ (2004) Extended interval for retrieval of Günther Tulip filters. J Vasc Interv Radiol 15:1257–1262

    PubMed  Google Scholar 

  19. Looby S, Given MF, Geoghegan T, McErlean A, Lee MJ (2007) Günther Tulip retrievable inferior vena caval filters: indications, efficacy, retrieval and complications. Cardiovasc Intervent Radiol 30:59–65

    Article  PubMed  CAS  Google Scholar 

  20. Van Ha T et al (2006) Cardiovasc Intervent Radiol 29:S81–S291

    Article  Google Scholar 

  21. De Gregorio MA, Gamboa P, Gimeno MJ et al (2003) The Günther Tulip retrievable filter: prolonged temporary filtration by repositioning within the inferior vena cava. J Vasc Interv Radiol 14:1259–1265

    PubMed  Google Scholar 

  22. Fotiadis NI, Sabharwal T, Dourado R, Fikrat S, Adam A (2007) Technical error during deployment leads to vena cava filter migration and massive pulmonary embolism. Cardiovasc Intervent Radiol Aug 29 [Epub ahead of print], DOI 10.1007/s00270-007-9159-6

  23. Yamagami T, Kato T, Iida S, Hirota T, Nishimura T (2005) Günther Tulip inferior vena cava filter placement during treatment for deep venous thrombosis of the lower extremity. Cardiovasc Intervent Radiol 28:442–453

    Article  PubMed  Google Scholar 

  24. Saeed I, Garcia M, McNicholas K (2006) Right ventricular migration of a recovery IVC filter’s fractured wire with subsequent pericardial tamponade. Cardiovasc Intervent Radiol 29:685–686

    Article  PubMed  Google Scholar 

  25. Ganguli S, Tham JC, Komlos F, Rabkin DJ (2006) Fracture and migration of a suprarenal inferior vena cava filter in a pregnant patient. J Vasc Interv Radiol 17:1707–1711

    Article  PubMed  Google Scholar 

  26. Millward S (1998) Temporary and retrievable vena caval filters: current status. J Vasc Interv Radiol 9:381–387

    Article  PubMed  CAS  Google Scholar 

  27. Günther RW, Neuerburg J, Mossdorf A et al (2005) New optional IVC filter for percutaneous retrieval—in vitro evaluation of embolus capturing efficiency. Rofo 177:632–636

    PubMed  Google Scholar 

  28. Bucker et al (2006) Long-term retrieval of modified Günther Tulip vena cava filters-an animal study. Cardiovasc Intervent Radiol 29:S81–S291 [abstract]

    Article  Google Scholar 

  29. Oliva VL, Szatmari F, Giroux MF, Flemming BK, Cohen SA, Soulez G (2005) The Jonas study: evaluation of the retrievability of the Cordis OptEase inferior vena cava filter. J Vasc Interv Radiol 16:1439–1445

    PubMed  Google Scholar 

  30. Rosenthal D, Swischuk JL, Cohen SA, Wellons ED (2005) OptEase retrievable inferior vena cava filter: initial multicenter experience. Vascular 13:286–289

    Article  PubMed  Google Scholar 

  31. Karmy-Jones R, Jurkovich GJ, Velmahos GC et al (2007) Practice patterns and outcomes of retrievable vena cava filters in trauma patients: an AAST multicenter study. J Trauma 62:17–25

    Article  PubMed  Google Scholar 

  32. Keller IS, Meier C, Pfiffner R, Keller E, Pfammatter T (2007) Clinical comparison of two optional vena cava filters. J Vasc Interv Radiol 18:505–511

    Article  PubMed  Google Scholar 

  33. Asch MR (2002) Initial experience in humans with a new retrievable inferior vena cava filter. Radiology 225:835–844

    Article  PubMed  Google Scholar 

  34. Grande WJ, Trerotola SO, Reilly PM et al (2005) Experience with the Recovery filter as a retrievable inferior vena cava filter. J Vasc Interv Radiol 16:1189–1193

    PubMed  Google Scholar 

  35. Ray CE, Mitchell E, Zipser S, Kao EY, Brown CF, Moneta GL (2006) Outcomes with retrievable inferior vena cava filters: a multicenter study. J Vasc Interv Radiol 17:1595–1604

    Article  PubMed  Google Scholar 

  36. Brountzos EN, Kaufman JA, Venbrux AC et al (2003) A new optional vena cava filter: retrieval at 12 weeks in an animal model. J Vasc Interv Radiol 14:763–772

    PubMed  Google Scholar 

  37. Binkert CA, Sasadeusz K, Stavropoulos SW (2006) Retrievability of the recovery vena caval filter after dwell times longer than 180 days. J Vasc Interv Radiol 17:299–302

    Article  PubMed  Google Scholar 

  38. Kuo WT, Loh CT, Sze DY (2007) Emergency retrieval of a G2 filter after complete migration into the right ventricle. J Vasc Interv Radiol 18:1177–1182

    Article  PubMed  Google Scholar 

  39. Cantwell CP, Lynch FC (2007) Caudal migration of a G2 filter during carbon dioxide cavography. J Vasc Interv Radiol 18:814–815

    Article  PubMed  Google Scholar 

  40. Pieri S, Agresti M, Morucci M, De Medici L (2003) Optional vena cava filters: preliminary experience with a new vena cava filter. Radiol Med 105:56–62

    PubMed  Google Scholar 

  41. Imberti D, Bianchi M, Farina A, Siragusa S, Silingardi M, Ageno W (2005) Clinical experience with retrievable vena cava filters: results of a prospective observational multicenter study. J Thromb Haemost 3:1370–1375

    Article  PubMed  CAS  Google Scholar 

  42. Bruckheimer E, Judelman AG, Bruckheimer SD, Tavori I, Naor G, Katzen BT (2003) In vitro evaluation of a retrievable low-profile nitinol vana cava filter. J Vasc Interv Radiol 14:469–474

    PubMed  Google Scholar 

  43. Grassi CJ, Swan TL, Cardella JF et al (2003) Quality improvement guidelines for percutaneous permanent inferior vena cava filter placement for the prevention of pulmonary embolism. J Vasc Interv Radiol 14:S271–S275

    PubMed  Google Scholar 

  44. Streiff MB (2000) Vena caval filters: a comprehensive review. Blood 95:3669–3677

    PubMed  CAS  Google Scholar 

  45. Kaufman JA, Kinney TB, Streiff MB et al (2006) Guidelines for the use of retrievable and convertible vena cava filters: report from the Society of Interventional Radiology Multidisciplinary Consensus Conference. J Vasc Interv Radiol 17:449–459

    Article  PubMed  Google Scholar 

  46. Kirilcuk NN, Herget EJ, Dicker RA, Spain DA, Hellinger JC, Brundage SI (2005) Are temporary inferior vena cava filters really temporary? Am J Surg 190:858–863

    Article  PubMed  CAS  Google Scholar 

  47. Antevil JL, Sise MJ, Sack DI et al (2006) Retrievable vena cava filters for preventing pulmonary embolism in trauma patients: a cautionary tale. J Trauma 60:35–40

    Article  PubMed  Google Scholar 

  48. Quirke TE, Ritota PC, Swan KG (1997) Inferior vena caval filter use in U.S. trauma centers: a practioner survey. J Trauma 43:333–337

    Article  PubMed  CAS  Google Scholar 

  49. Allen TL, Carter JL, Morris BJ, Harker CP, Stevens MH (2005) Retrievable vena cava filters in trauma patients for high-risk prophylaxis and prevention of pulmonary embolism. Am J Surg 189:656–661

    Article  PubMed  Google Scholar 

  50. Anaya DA, Nathens AB (2005) Thrombosis and coagulation: deep vein thrombosis and pulmonary embolism prophylaxis. Surg Clin North Am 85:1163–1177

    Article  PubMed  Google Scholar 

  51. Geerts WH, Code KI, Jay RM, Chen E, Szalai JP (1994) A prospective study of venous thromboembolism after major trauma. N Engl J Med 331:1601–1606

    Article  PubMed  CAS  Google Scholar 

  52. Velmahos GC, Kern J, Chan LS et al (2000) Prevention of venous thromboembolism after injury: an evidenced based report; Part II. Analysis of risk factors and evaluation of the role of vena caval filters. J Trauma 49:140–144

    Article  PubMed  CAS  Google Scholar 

  53. Velmahos GC, Kern J, Chan LS et al (2000) Prevention of venous thromboembolism after injury: an evidence-based report; Part I. Analysis of risk factors and evaluation of the role of vena caval filters. J Trauma 49:132–138

    Article  PubMed  CAS  Google Scholar 

  54. McMurtry AL, Owings JT, Anderson JT, Battistella FD, Gosselin R (1999) Increased use of prophylactic vena cava filters in trauma patients failed to decrease overall incidence of pulmonary embolism. Am J Coll Surg 189:314–320

    Article  CAS  Google Scholar 

  55. Piano G, Ketteler ER, Prachand V et al (2007) Safety, feasibility, and outcome of retrievable vena cava filters in high-risk surgical patients. J Vasc Surg 45:784–788

    Article  PubMed  Google Scholar 

  56. Frezza EE, Wachtel MS (2006) A simple venous thromboembolism prophylaxis protocol for patients undergoing Bariatric surgery. Obesity (Silver Spring) 14:1961–1965

    Article  CAS  Google Scholar 

  57. Hann CL, Streiff MB (2005) The role of vena caval filters in the management of venous thromboembolism. Blood Rev 19:179–202

    Article  PubMed  Google Scholar 

  58. Schunn C, Schunn GB, Hobbs G, Vona-Davis LC, Waheed U (2006) Inferior vena cava filter placement in late-stage cancer. Vasc Endovascular Surg 40:287–294

    Article  PubMed  Google Scholar 

  59. O’Sullivan GJ, Lohan DG, Gough N, Cronin CG, Kee ST (2007) Pharmacomechanical thrombectomy of acute deep vein thrombosis with the Trellis-8 isolated thrombolysis catheter. J Vasc Interv Radiol 18:715–724

    Article  PubMed  Google Scholar 

  60. El Sayed HF, Kougias P, Zhou W, Lin PH (2006) Utility of retrievable vena cava filters and mechanical thrombectomy in the endovascular management of acute deep venous thrombosis. Vascular 14:305–312

    Article  PubMed  Google Scholar 

  61. Lee KH, Han H, Lee KJ et al (2006) Mechanical thrombectomy of acute iliofemoral deep vein thrombosis with use of an Arrow-Trerotola percutaneous thrombectomy device. J Vasc Interv Radiol 17:487–495

    Article  PubMed  Google Scholar 

  62. Grassi CJ (1991) Inferior vena caval filters: analysis of five currently available devices. Am J Roentgenol 156:813–821

    CAS  Google Scholar 

  63. Roehm JOJ, Johnsrude IS, Barth MH, Gianturco C (1988) The bird’s nest inferior vena cava filter: progress report. Radiology 168:745–749

    PubMed  Google Scholar 

  64. Kinney TB (2003) Update on inferior vena cava filters. J Vasc Interv Radiol 14:425–440

    PubMed  Google Scholar 

  65. Greenfield LJ, Rutherford RB (1999) Recommended reporting standards for vena caval filter placement and patient follow-up. Vena Caval Filter Consensus Conference. J Vasc Interv Radiol 10:1013–1019

    Article  PubMed  CAS  Google Scholar 

  66. Girard P, Stern JB, Parent F (2002) Medical literature and vena cava filters: so far so weak. Chest 122:963–967

    Article  PubMed  Google Scholar 

  67. Recommended reporting standards for vena caval filter placement and patient follow-up: Vena Caval Filter Consensus Conference (1999) J Vasc Surg 30:573–579

    Article  Google Scholar 

  68. The participants in the vena caval filter consensus conference (2003) Recommended reporting standards for vena caval filter placement and patient follow-up J Vasc Interv Radiol 14:S427–S432

    Google Scholar 

  69. Millward SF, Grassi CJ, Kinney TB et al (2005) Reporting standards for inferior vena caval filter placement and patient follow-up: supplement for temporary and retrievable/optional filters. J Vasc Interv Radiol 16:441–443

    Article  PubMed  Google Scholar 

  70. Snow V, Qaseem A, Barry P et al (2007) Management of venous thromboembolism: a clinical practice guideline from the American College of Physicians and the American Academy of Family Physicians. Ann Intern Med 146:204–210

    PubMed  Google Scholar 

  71. Segal JB, Streiff MB, Hofmann LV, Thornton K, Bass EB (2007) Management of venous thromboembolism: a systematic review for a practice guideline. Ann Intern Med 146:211–222

    PubMed  Google Scholar 

  72. Stein PD, Alnas M, Skaf E et al (2004) Outcome and complications of retrievable inferior vena cava filters. Am J Cardiol 94:1090–1093

    Article  PubMed  Google Scholar 

  73. Geets WH, Pineo GF, Heit JA et al (2004) Prevention of venous thrombosis. The seventh ACCP conference on antithrombotic and thrombolytic therapy. Chest 126:338–400S

    Article  Google Scholar 

  74. Ballew KA, Philbrick JT, Becker DM (1995) Vena cava filter devices. Clin Chest Med 16:295–305

    PubMed  CAS  Google Scholar 

  75. Kanter B, Moser KM (1988) The Greenfield vena cava filter. Chest 93:170–175

    Article  PubMed  CAS  Google Scholar 

  76. Greenfield LJ, Proctor MS (2001) Recurrent thromboembolism in patients with vena caval filters. J Vasc Surg 33:510–514

    Article  PubMed  CAS  Google Scholar 

  77. Dovrish Z, Hadary R, Blickstein D, Shilo L, Ellis MH (2006) Retrospective analysis of the use of inferior vena cava filters in routine hospital practice. Postgrad Med J 82:150–153

    Article  PubMed  CAS  Google Scholar 

  78. Yale SH, Mazza JJ, Glurich I, Peters T, Mukesh BN (2006) Recurrent venous thromboembolism in patients with and without anticoagulation after inferior vena caval filter placement. Int Angiol 25:60–66

    PubMed  CAS  Google Scholar 

  79. Sakuma M, Nakamura M, Nakanishi N et al (2004) Inferior vena cava filter is a new additional therapeutic option to reduce mortality from acute pulmonary embolism. Circ J 68:816–821

    Article  PubMed  Google Scholar 

  80. Schulman S, Granqvist S, Holmstrom M et al (1997) The duration of oral anticoagulant therapy after a second episode of venous thromboembolism: The Duration of Anticoagulation Trial Study Group. N Engl J Med 336:393–398

    Article  PubMed  CAS  Google Scholar 

  81. Levine M, Gent M, Hirsh J et al (1996) A comparison of low-molecular weight heparin administered primarily at home with unfractionated heparin administered in the hospital for proximal deep-vein thrombosis. N Engl J Med 334:677–681

    Article  PubMed  CAS  Google Scholar 

  82. White RH, Beyth RJ, Zhou H, Romano PS (1999) Major bleeding after hospitalization for deep venous thrombosis. Am J Med 107:414–424

    Article  PubMed  CAS  Google Scholar 

  83. Brandjes DP, Buller HR, Heijboer H et al (1997) Randomised trial of effect of compression stockings in patients with symptomatic proximal-vein thrombosis. Lancet 349:759–762

    Article  PubMed  CAS  Google Scholar 

  84. Prandoni P, Lensing AWA, Prins MH et al (2004) Below-knee elastic compression stockings to prevent the post-thrombotic syndrome. Ann Intern Med 141:249–256

    PubMed  Google Scholar 

  85. Neuerburg J, Günther R, Rassmussen E et al (1993) New retrievable percutaneous vena filter: experimental in vitro and vivo evolution. Cardiovasc Intervent Radiol 16:224–229

    Article  PubMed  CAS  Google Scholar 

  86. De Gregorio MA, Gimeno MJ, Lostale F et al (2004) Retrievability of uncoated versus paclitaxel - coated Günther - Tulip IVC filters in an animal model. J Vasc Interv Radiol 15:719–726

    PubMed  Google Scholar 

  87. Proctor MC, Cho KJ, Greenfield LJ (2000) In vivo evaluation of vena caval filters: can function be linked to design characteristics? Cardiovasc Intervent Radiol 23:460–465

    Article  PubMed  CAS  Google Scholar 

  88. Erbel R, Di Mario C, Bartunek J et al (2007) PROGRESS-AMS (Clinical Performance and Angiographic Results of Coronary Stenting with Absorable Metal Stents) Investigators. Temporary scaffolding of coronary arteries with bioabsorbable magnesium stents:a prospective, non-randomised multicentre trial. Lancet 369:1869–1875

    Article  PubMed  CAS  Google Scholar 

  89. Millward SF, Oliva VL, Bell SD et al (2001) Günther Tulip retrievable vena cava filter: results from the Registry of the Canadian Interventional Radiology Association. J Vasc Interv Radiol 12:1053–1058

    Article  PubMed  CAS  Google Scholar 

  90. Offner PJ, Hawkes A, Madayag R, Seale F, Maines C (2003) The role of temporary inferior vena cava filters in critically ill surgical patients. Arch Surg 138:591–595

    Article  PubMed  Google Scholar 

  91. Mismetti P, Rivron-Guillot K, Quenet S et al (2007) A prospective long-term study of 220 patients with a retrievable vena cava filter fro secondary prevention of venous thromboembolism. Chest 131:223–229

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Lee.

Appendices

Appendix 1

Permanent caval filter indications modified from Grassi et al. [43]

ABSOLUTE

  • Contraindication to anticoagulation with proven PE or significant DVT

  • Anticoagulation failure (10%):

    • Breakthrough PE

    • Inability to achieve adequate anticoagulation

  • Anticoagulation complication:

    • Major hemorrhage, approx. 10–26% risk

    • Heparin-induced thrombocytopenia (HITS), 5–15%

    • Heparin-induced osteoporosis

    • Heparin-induced skin necrosis

RELATIVE

  • IVC/iliofemoral thrombus, free floating DVT with no PE

  • Progression/extension of DVT despite adequate anticoagulation

  • Anticoagulation therapy problematic in patient with PE: syncope/unsteady gait/poor compliance

  • Massive PE with residual DVT in patient at risk for further PE

  • Recurrent PE with filter in place (place 2nd filter)

  • DVT with severe cardiopulmonary disease

  • Recent DVT undergoing major surgery

  • Pregnancy with proximal DVT (may need supra-renal placement)

  • DVT thrombolysis (controversial) [64]

Appendix 2

Contraindications for permanent caval filter placement modified from Grassi et al. [43]

ABSOLUTE

  • Young patient with long life expectancy

  • Obstructive thrombus along all access routes

  • Early pregnancy

RELATIVE

  • Uncorrectable severe coagulopathy

  • Bacteraemia/untreated infection

Appendix 3

Clinical indications for optional filter placement

  • Same as permanent [45].

    However, in selected cases, retrievable filters maybe used for relative indications, e.g.:

    1. 1.

      Time-limited indication for caval filtration, recent or near-term surgery with DVT [64]

    2. 2.

      Prophylaxis: high risk of thromboembolism [52]

      • Trauma, major (extensive pelvic/long bone fractures)

      • Spinal paralysis/traumatic brain injury-prolonged immobile.

      • Major surgery with significant VTE risk

        • Bariatric surgery

        • Hypercoagulable states

        • Remote history of DVT/PE

      • Advanced malignancy

      • Venous reconstructions

    3. 3.

      Free floating DVT [64] or large burden of proximal DVT

    4. 4.

      PE with marginal cardiopulmonary reserve [64]

Appendix 4

Optimal filter characteristics [62]

  • Small calibre, flexible delivery device

  • High efficacy in trapping emboli, without impeding blood flow

  • Secure fixation, without injuring vessel wall

  • Repositioning/removal possiblea

  • MR compatible

  • Low cost

  • Nonthrombogenic

  • No associated mortality, minimal morbidity

    aNew feature of optional/retrievable devices, all other features permanent and retrievable

Appendix 5

Criteria for successful placement [89]

  • Delivery system advanced to placement level

  • Ideal position: apex of filter at or just below level of renal veins

  • Filter deployed and fixed at intended position

    • No migration/embolisation

    • No IVC penetration

  • Filter configuration conferred protection from PE

    • Complete opening

    • No additional device needed

    • No/minimal tilt <15°

Early complications [43]

  • IVC penetration (0–41%, but clinically significant penetration rare)

  • Access site thrombosis (0–6%, threshold = 1%)

  • Insertion complications (arterial puncture, arteriovenous fistula, pneumothorax, air embolism, haematoma, infection, haemorrhage, 5–50%)

  • Death (0.12%, threshold <1%)

Late complications [43]

  • Breakthrough PE (0.5–6%, threshold 5%)

  • Recurrent DVT (20.8%, permanent) [8]

  • Thrombotic occlusion of IVC (2–30%, threshold 10%)

  • Filter fracture and embolisation (2–5%, threshold 2%)

  • Migration (0–18%)

  • Vena caval stenosis

  • Venous insufficiency (5–59%, at 6 years)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keeling, A.N., Kinney, T.B. & Lee, M.J. Optional inferior vena caval filters: where are we now?. Eur Radiol 18, 1556–1568 (2008). https://doi.org/10.1007/s00330-008-0923-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-008-0923-z

Keywords

Navigation