Skip to main content
Log in

Efficient developmental mis-targeting by the sporamin NTPP vacuolar signal to plastids in young leaves of sugarcane and Arabidopsis

  • Cell Biology and Morphogenesis
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Plant vacuoles are multi-functional, developmentally varied and can occupy up to 90% of plant cells. The N-terminal propeptide (NTPP) of sweet potato sporamin and the C-terminal propeptide (CTPP) of tobacco chitinase have been developed as models to target some heterologous proteins to vacuoles but so far tested on only a few plant species, vacuole types and “payload” proteins. Most studies have focused on lytic and protein-storage vacuoles, which may differ substantially from the sugar-storage vacuoles in crops like sugarcane. Our results extend the evidence that NTPP of sporamin can direct heterologous proteins to vacuoles in diverse plant species and indicate that sugarcane sucrose-storage vacuoles (like the lytic vacuoles in other plant species) are hostile to heterologous proteins. A low level of cytosolic NTPP-GFP (green fluorescent protein) was detectable in most cell types in sugarcane and Arabidopsis, but only Arabidopsis mature leaf mesophyll cells accumulated NTPP-GFP to detectable levels in vacuoles. Unexpectedly, efficient developmental mis-trafficking of NTPP-GFP to chloroplasts was found in young leaf mesophyll cells of both species. Vacuolar targeting by tobacco chitinase CTPP was inefficient in sugarcane, leaving substantial cytoplasmic activity of rat lysosomal β-glucuronidase (GUS) [ER (endoplasmic reticulum)-RGUS-CTPP]. Sporamin NTPP is a promising targeting signal for studies of vacuolar function and for metabolic engineering. Such applications must take account of the efficient developmental mis-targeting by the signal and the instability of most introduced proteins, even in “storage vacuoles”.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

BGUS:

Bacterial β-glucuronidase

CCLR:

Cell culture lysis reagent

CTPP:

C-terminal propeptide

DW:

Dry weight

ER:

Endoplasmic reticulum

FW:

Fresh weight

GFP:

Green fluorescent protein

LAR:

Luciferase assay reagent

LUC:

Firefly luciferase

MGUS:

Modified glycosylation-resistant GUS

NR:

Neutral red

NTPP:

N-terminal propeptide

RGUS:

Rat lysosomal GUS

RLU:

Relative light units

References

  • Amidon WJ, Pfeil JE, Gal S (1999) Modification of luciferase to be a substrate for plant aspartic proteinase. Biochem J 343:425–433

    Article  CAS  PubMed  Google Scholar 

  • Bagga S, Sutton D, Kemp JD, Sengupta-Gopalan, C (1992) Constitutive expression of the beta-phaseolin gene in different tissues of transgenic alfalfa does not ensure phaseolin accumulation in non-seed tissue. Plant Mol Biol 19:951–958

    CAS  PubMed  Google Scholar 

  • Bagga S, Adams H, Kemp JD, Sengupta-Gopalan C (1995) Accumulation of the 15-kDa zein in novel protein bodies in transgenic tobacco. Plant Physiol 107:13–23

    CAS  PubMed  Google Scholar 

  • Bassham DC, Raikhel NV (2000) Unique features of the plant vacuolar sorting machinery. Curr Opin Cell Biol 12:491–495

    Article  CAS  PubMed  Google Scholar 

  • Bechtold N, Ellis J, Pelletier G (1993) In planta Agrobacterium mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. C R Acad Sci Ser 3 316:1194–1199

    CAS  Google Scholar 

  • Birch RG (1997) Plant transformation: problems and strategies for practical application. Annu Rev Plant Physiol Plant Mol Biol 48:297–326

    Article  CAS  PubMed  Google Scholar 

  • Boevink P, Martin B, Oparka K, Santa Cruz S, Hawes C (1999) Transport of virally expressed green fluorescent protein through the secretory pathway in tobacco leaves is inhibited by cold shock and brefeldin A. Planta 208:392–400

    Article  CAS  Google Scholar 

  • Bokman SH, Ward WW (1981) Renaturation of Aequorea green fluorescent protein. Biochem Biophys Res Commun 101:1372–1380

    CAS  PubMed  Google Scholar 

  • Bower R, Elliott AR, Potier BAM, Birch RG (1996) High efficiency, microprojectile-mediated cotransformation of sugarcane, using visible or selectable markers. Mol Breed 2:239–249

    CAS  Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantification of microgram quantities of protein using the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Caimi PG, McCole LM, Klein TM, Kerr PS (1996) Fructan accumulation and sucrose metabolism in transgenic maize endosperm expressing a Bacillus amyloliquefaciens SacB gene. Plant Physiol 110:355–363

    CAS  PubMed  Google Scholar 

  • Cavalier-Smith T (2003) Genomic reduction and evolution of novel genetic membranes and protein-targeting machinery in eukaryote–eukaryote chimaeras (meta-algae). Philos Trans R Soc London Ser B 358:109–133

    Article  CAS  Google Scholar 

  • Christensen AH, Quail PH (1996) Ubiquitin promoter-based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants. Transgenic Res 5:213–218

    CAS  PubMed  Google Scholar 

  • Denecke J, Botterman J, Deblaere R (1990) Protein secretion in plant cell can occur via a default pathway. Plant Cell 2:51–59

    Article  CAS  PubMed  Google Scholar 

  • Di Sansebastiano GP, Paris N, Marc-Martin S, Neuhaus J-M (1998) Specific accumulation of GFP in a non-acidic vacuolar compartment via a C-terminal propeptide-mediated sorting pathway. Plant J 15:449–457

    Article  PubMed  Google Scholar 

  • Di Sansebastiano GP, Paris N, Marc-Martin S, Neuhaus J-M (2001) Regeneration of a lytic central vacuole and of neutral peripheral vacuoles can be visualized by green fluorescent proteins targeted to either type of vacuoles. Plant Physiol 126:78–86

    Article  PubMed  Google Scholar 

  • Dixon DC, Cutt JR, Klessig DF (1991) Differential targeting of the tobacco PR-1 pathogenesis related proteins to the extracellular space and vacuoles of crystal idioblasts. EMBO J 10:1317–1324

    CAS  PubMed  Google Scholar 

  • Ebskamp MJM, van der Meer IM, Spronk BA, Weisbeek PJ, Smeekens SCM (1994) Accumulation of fructose polymers in transgenic tobacco. Biotechnology 12:272–275

    Article  CAS  PubMed  Google Scholar 

  • Farrell LB, Beachy RN (1992) Review of the use of the GUS gene for analysis of secretory systems. In: Gallagher SR (ed) GUS protocols: using the GUS gene as a reporter of gene expression. Academic, San Diego, pp 127–134

    Google Scholar 

  • Finer JJ, Vain P, Jones MW, McMullen MD (1992) Development of the particle inflow gun for DNA delivery to plant cells. Plant Cell Rep 11:323–328

    CAS  Google Scholar 

  • Firek S, Whitelam GC, Draper J (1994) Endoplasmic reticulum targeting of active modified β-glucuronidase (GUS) in transgenic tobacco plants. Transgenic Res 3:326–331

    CAS  PubMed  Google Scholar 

  • Flückiger R, Caroli MD, Piro G, Dalessandro G, Neuhaus J-M, Di Sansebastiano GP (2003) Vacuolar system distribution in Arabidopsis tissues, visualized using GFP fusion proteins. J Exp Bot 54:1577–1584

    Article  PubMed  Google Scholar 

  • Franks T, Birch RG (1991) Gene transfer into intact sugarcane cells using microprojectile bombardment. Aust J Plant Physiol 18:471–480

    CAS  Google Scholar 

  • Gilissen LJW, Metz PLJ, Stiekema WJ, Nap JP (1998) Biosafety of E. coli β-glucuronidase (GUS) in plants. Transgenic Res 7:157–163

    Article  CAS  PubMed  Google Scholar 

  • Gruis DF, Selinger DA, Curran JM, Jung R (2002) Redundant proteolytic mechanisms process seed storage proteins in the absence of seed-type members of the vacuolar processing enzyme family of cysteine proteases. Plant Cell 14:2863–2882

    Article  CAS  PubMed  Google Scholar 

  • Haseloff J, Siemering KR, Prasher DC, Hodge S (1997) Removal of a cryptic intron and subcellular localization of green fluorescent protein are required to mark transgenic Arabidopsis plants brightly. Proc Natl Acad Sci USA 94:2122–2127

    Article  CAS  PubMed  Google Scholar 

  • Herman EM, Larkins BA (1999) Protein storage bodies and vacuoles. Plant Cell 11:601–613

    Article  CAS  PubMed  Google Scholar 

  • Iturriaga G, Jefferson RA, Bevan MV (1989) Endoplasmic reticulum targeting and glycosylation of hybrid proteins in transgenic tobacco. Plant Cell 1:381–390

    Article  CAS  PubMed  Google Scholar 

  • Jacobsen KR, Fisher DG, Maretzki A, Moore PH (1992) Developmental changes in the anatomy of the sugarcane stem in relation to phloem unloading and sucrose storage. Bot Acta 105:70–80

    Google Scholar 

  • Jefferson RA (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Rep 5:387–405

    CAS  Google Scholar 

  • Jin JB, Kim YA, Kim SJ, Lee SH, Kim DH, Cheong GW, Hwang I (2001) A new dynamin-like protein, ADL6, is involved in trafficking from the trans-Golgi network to the central vacuole in Arabidopsis. Plant Cell 13:1511–1526

    Article  CAS  PubMed  Google Scholar 

  • Kim DH, Eu Y, Yoo CM, Kim Y, Pih KT, Jin JB, Kim SJ, Stenmark H, Hwang I (2001) Trafficking of Phosphotidylinositol 3-Phosphate from the trans-Golgi network to the lumen of the central vacuole in plant cells. Plant Cell 13:287–301

    Article  CAS  PubMed  Google Scholar 

  • Kjemtrup S, Borkhsenious O, Raikhel NV Chrispeels MJ (1995) Targeting and release of phytohemagglutinin from the roots of bean seedlings. Plant Physiol 109:603–610

    Article  CAS  PubMed  Google Scholar 

  • Kyle JW, Galvin N, Vogler C, Grubb JH (1992) β-glucuronidase (GUS) assay in animal tissue. In: Gallagher SR (ed) GUS protocols: using the GUS gene as a reporter of gene expression. Academic, San Diego, pp 189–203

    Google Scholar 

  • Last DI, Brettell RIS, Chamberlain DA, Chaudhury AM, Larkin PJ, Marsh EL (1991) pEmu: an improved promoter for gene expression in cereal cells. Theor Appl Genet 81:581–588

    CAS  Google Scholar 

  • Ludwig SR, Bowen B, Beach L, Wessler SR (1990) A regulatory gene as a novel visible marker for maize transformation. Science 247:449–450

    Google Scholar 

  • Luehrsen KR, Walbot V (1993) Firefly luciferase as a reporter for plant gene expression studies. Plant Cell Rep 13:454–458

    Google Scholar 

  • Ma H, Albert HH, Paul R, Moore PH (2000) Metabolic engineering of invertase activities in different subcellular compartments affects sucrose accumulation in sugarcane cells. Aust J Plant Physiol 27:1021–1030

    Article  CAS  Google Scholar 

  • Matsuoka K, Nakamura K (1991) Propeptide of a precursor to a plant vacuolar protein is required for vacuolar targeting. Proc Natl Acad Sci USA 88:834–838

    CAS  PubMed  Google Scholar 

  • Matsuoka K, Neuhaus J-M (1999) Cis-elements of protein transport to the vacuoles. J Exp Bot 50:165–174

    Article  CAS  Google Scholar 

  • Meer IM van der, Ebskamp MJM, Visser RGF, Weisbeek PJ, Smeekens SCM (1994) Fructan as a new carbohydrate sink in transgenic potato plants. Plant Cell 6:561–570

    Article  PubMed  Google Scholar 

  • Moore PH (1995) Temporal and spatial regulation of sucrose accumulation in the sugarcane stem. Aust J Plant Physiol 22:661–679

    CAS  Google Scholar 

  • Moore PH, Botha FC, Furbank RT, Grof CPL (1997) Potential for overcoming physio-chemical limits to sucrose accumulation. In: Keating BA, Wilson JR (eds) Intensive sugarcane production: meeting the challenges beyond 2000. Proc Sugar 2000 Symp. CAB Int, Wallingford, pp 141–156

    Google Scholar 

  • Mylne J, Botella JR (1998) Binary vectors for sense and antisense expression of Arabidopsis ESTs. Plant Mol Biol Rep 16:257–262

    Article  CAS  Google Scholar 

  • Nagel RJ, Manners JM, Birch RG (1992) Evaluation of an ELISA assay for rapid detection and quantification of Neomycin phosphotransferase II in transgenic plants. Plant Mol Biol Rep 10:263–272

    CAS  Google Scholar 

  • Nakamura Y, Wada KN, Wada Y, Doi H, Kanaya S, Gojobori T, Ikemura, T (1996) Codon usage tabulated from the international DNA sequence databases. Nucleic Acids Res 24:214–215

    Article  CAS  PubMed  Google Scholar 

  • Neuhaus J-M, Rogers JC (1998) Sorting of proteins to vacuoles in plant cells. Plant Mol Biol 38:127–144

    Article  CAS  PubMed  Google Scholar 

  • Neuhaus J-M, Maciej Pietrzak M, Freydl E, Boller T (1996) Expression and correct localization of animal secretory proteins in plant cells. J Cell Biochem [Suppl]:146

    Google Scholar 

  • Nishimura Y, Rosenfeld MG, Kreibich G, Gubler U, Sabatini DD, Adesnik M, Andy R (1986) Nucleotide sequence of rat preputial gland beta-glucuronidase cDNA and in vitro insertion of its encoded polypeptide into microsomal membranes. Proc Natl Acad Sci USA 83:7292–7296

    CAS  PubMed  Google Scholar 

  • Niwa Y, Hirano T, Yoshimoto K, Shimizu M, Kobayashi H (1999) Non-invasive quantitative detection and applications of non toxic, S65T-type green fluorescent protein in living plants. Plant J 18:455–463

    Article  CAS  PubMed  Google Scholar 

  • Ohto M, Nakamura KK, Nakamura K (1992) Induction of expression of genes coding for sporamin and beta-amylase by polygalacturonic acid in leaf-petiole cuttings of sweet potato. Plant Physiol 99:422–427

    CAS  Google Scholar 

  • Pang SZ, Rasmussen J, Ye GN, Sanford JC (1992) Use of the signal peptide of Pisum vicilin to translocate β-glucuronidase in Nicotiana tabacum. Gene 112:229–234

    Article  CAS  PubMed  Google Scholar 

  • Schwartzbach SD, Osafune T, Löffelhardt W (1998) Protein import into cyanelles and complex chloroplasts. Plant Mol Biol 38:247–263

    Article  CAS  PubMed  Google Scholar 

  • Siemering KR, Golbik R, Sever R, Haseloff, J (1996) Mutations that suppress the thermosensitivity of green fluorescent protein. Curr Biol 6:1653–1663

    Article  CAS  PubMed  Google Scholar 

  • Small I, Wintz H, Akashi K, Mireau H (1998) Two birds with one stone: genes that encode products targeted to two or more compartments. Plant Mol Biol 38:265–277

    Article  CAS  PubMed  Google Scholar 

  • Srinivasan C, Vasil IK (1986) Plant regeneration from protoplasts of sugarcane (Saccharum officinarum L.). J Plant Physiol 126:41–48

    CAS  Google Scholar 

  • Tamura K, Shimada T, Ono E, Tanaka Y, Nagatani A, Higashi S, Watanabe M, Nishimura M, Hara-Nishimura I (2003) Why green fluorescent fusion proteins have not been observed in the vacuoles of higher plants. Plant J 35:545–555

    Article  CAS  PubMed  Google Scholar 

  • Taylor PWJ, Ko H-L, Adkins SW, Rathus C, Birch RG (1992) Establishment of embryogenic callus and high protoplast yielding suspension cultures of sugarcane (Saccharum spp hybrids). Plant Cell Tissue Organ Cult 28:69–78

    Google Scholar 

  • Turk SCHJ, De Roos K, Scotti PA, Van Dun K, Weisbeek P, Smeekens SCM (1997) The vacuolar sorting domain of sporamin transports GUS, but not levansucrase, to the plant vacuole. New Phytol 136:29–38

    Article  CAS  Google Scholar 

  • Vitale A, Raikhel NV (1999) What do proteins need to reach different vacuoles? Trends Plant Sci 4:149–155

    Article  PubMed  Google Scholar 

  • Whatley JM, McLean B, Juniper BE (1991) Continuity of chloroplast and endoplasmic reticulum membranes in Phaseolus vulgaris. New Phytol 117:209–217

    Google Scholar 

  • Xu CC, Fan JL, Riekhof W, Froehlich JE, Benning C (2003) A permease-like protein involved in ER to thylakoid lipid transfer in Arabidopsis. EMBO J 22:2370–2379

    Article  CAS  PubMed  Google Scholar 

  • Yan X, Gonzales RA, Wagner GJ (1997) Gene fusions of signal sequences with a modified β-glucuronidase gene results in retention of the β-glucuronidase protein in the secretory pathway/plasma membrane. Plant Physiol 115:915–924

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Drs. Jean-Marc Neuhaus (University of Neuchatel, Switzerland) and Melvin G. Rosenfeld (New York School of Medicine, USA) for the RGUS constructs, Dr. J. Mylne (University of Queensland, Australia) for his help with Arabidopsis, and the University of Queensland for Postgraduate Research Scholarships (OPRS and UQPRS) to AG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert G. Birch.

Additional information

Communicated by P. Lakshmanan

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gnanasambandam, A., Birch, R.G. Efficient developmental mis-targeting by the sporamin NTPP vacuolar signal to plastids in young leaves of sugarcane and Arabidopsis. Plant Cell Rep 23, 435–447 (2004). https://doi.org/10.1007/s00299-004-0860-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-004-0860-5

Keywords

Navigation