Skip to main content

Vacuole Biogenesis in Plants

  • Living reference work entry
  • First Online:
Plant Cell Biology

Part of the book series: The Plant Sciences ((PLANTSCI,volume 20))

  • 207 Accesses

Abstract

The vacuole in plant is a membrane-bound organelle that essentially functions in multiple biological processes such as protein turnover, material storage, cellular homeostasis and defense. Two major types of vacuoles, the lytic vacuoles (LVs) and protein storage vacuoles (PSVs), exist in plants with different morphological properties, functions and biogenesis mechanisms. Most proteins located on the lytic vacuole membrane are transported through the conserved secretory pathway from the endoplasmic reticulum (ER) to the Golgi apparatus, further sorted at the trans-Golgi network (TGN), and delivered to the prevacuolar compartment (PVC) and then the vacuole. Alternatively, proteins could be transported through ER-to-vacuole, Golgi-to-vacuole and cytoplasma-to-vacuole pathways. For the plant unique PSVs, proteins are transported in distinct pathways including the dense vesicles, clathrin-coated vesicles, precursor-accumulating vesicles, and autophagy-mediated trafficking. Compared to the well-characterized molecular basis of protein trafficking to the vacuole, the knowledge of the vacuolar membrane origins is limited. Recent evidences showed that both the PVC and ER contribute to the vacuole biogenesis, while more progresses are expected with the rapid development of advanced techniques. In this book chapter, we presented an updated introduction about the plant vacuoles regarding the trafficking and biogenesis mechanisms.

Xiangfeng Wang and Kin Pan Chung have contributed equally to the article.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ahmed SU, Rojo E, Kovaleva V, Venkataraman S, Dombrowski JE, Matsuoka K, Raikhel NV. The plant vacuolar sorting receptor Atelp is involved in transport of Nh2-terminal Propeptide-containing vacuolar proteins in Arabidopsis thaliana. J Cell Biol. 2000;149(7):1335–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arcalis E, Ibl V, Peters J, Melnik S, Stoger E. The dynamic behavior of storage organelles in developing cereal seeds and its impact on the production of recombinant proteins. Front Plant Sci 2014;5:439.

    Google Scholar 

  • Barlowe C, Orci L, Yeung T, Hosobuchi M, Hamamoto S, Salama N, Rexach MF, Ravazzola M, Amherdt M, Schekman R. COPII: a membrane coat formed by sec proteins that drive vesicle budding from the endoplasmic reticulum. Cell. 1994;77(6):895–907.

    Article  CAS  PubMed  Google Scholar 

  • Bassham DC. Plant biology: pigments on the move. Nature. 2015;526(7575):644–5.

    Article  CAS  PubMed  Google Scholar 

  • Boller T, Kende H. Hydrolytic enzymes in the central vacuole of plant cells. Plant Physiol. 1979;63(6):1123–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bottanelli F, Foresti O, Hanton S, Denecke J. Vacuolar transport in tobacco leaf epidermis cells involves a single route for soluble cargo and multiple routes for membrane cargo. Plant Cell. 2011;23(8):3007–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buchanan BB, Gruissem W, Jones RL. Biochemistry and molecular biology of plants. New York: Wiley Blackwell; 2015.

    Google Scholar 

  • Cai Y, Zhuang X, Gao C, Wang X, Jiang L. Arabidopsis Endosomal sorting complex required for transport III (ESCRT-III) regulates internal vesicle formation of Prevacuolar compartment and is required for plant development. Plant Physiol 2014;165(3):1328–43.

    Google Scholar 

  • Chanoca A, Kovinich N, Burkel B, Stecha S, Bohorquez-Restrepo A, Ueda T, Eliceiri KW, Grotewold E, Otegui MS. Anthocyanin vacuolar inclusions form by a Microautophagy mechanism. Plant Cell. 2015;27(9):2545–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chung KP, Zeng Y, Jiang L. COPII Paralogs in plants: functional redundancy or diversity? Trends Plant Sci. 2016;21(9):758–69.

    Article  CAS  PubMed  Google Scholar 

  • Cui Y, Shen J, Gao C, Zhuang X, Wang J, Jiang L. Biogenesis of plant Prevacuolar Multivesicular bodies. Mol Plant. 2016;9(6):774–86.

    Article  CAS  PubMed  Google Scholar 

  • De D. Plant cell vacuoles: an introduction. Collingwood: Csiro Publishing; 2000.

    Google Scholar 

  • Dell’Angelica EC. AP-3-dependent trafficking and disease: the first decade. Curr Opin Cell Biol. 2009;21(4):552–9.

    Article  PubMed  Google Scholar 

  • Donohoe BS, Kang B-H, Staehelin LA. Identification and characterization of COPIa- and COPIb-type vesicle classes associated with plant and algal Golgi. Proc Natl Acad Sci. 2007;104(1):163–8.

    Article  CAS  PubMed  Google Scholar 

  • Ebine K, Inoue T, Ito J, Ito E, Uemura T, Goh T, Abe H, Sato K, Nakano A, Ueda T. Plant vacuolar trafficking occurs through distinctly regulated pathways. Curr Biol. 2014;24(12):1375–82.

    Article  CAS  PubMed  Google Scholar 

  • Galili G, Altschuler Y, Levanony H. Assembly and transport of seed storage proteins. Trends Cell Biol. 1993;3(12):437–42.

    Article  CAS  PubMed  Google Scholar 

  • Gao C, Cai Y, Wang Y, Kang BH, Aniento F, Robinson DG, Jiang L. Retention mechanisms for ER and Golgi membrane proteins. Trends Plant Sci. 2014a;19(8):508–15.

    Article  CAS  PubMed  Google Scholar 

  • Gao C, Luo M, Zhao Q, Yang R, Cui Y, Zeng Y, Xia J, Jiang L. A unique plant ESCRT component, FREE1, regulates multivesicular body protein sorting and plant growth. Curr Biol. 2014b;24(21):2556–63.

    Article  CAS  PubMed  Google Scholar 

  • Hara N, Shimada T, Hatano K, Takeuchi Y, Nishimura M. Transport of storage proteins to protein storage vacuoles is mediated by large precursor-accumulating vesicles. Plant Cell. 1998;10(5):825–36.

    Article  Google Scholar 

  • Hawes C, Osterrieder A, Hummel E, Sparkes I. The plant ER-Golgi interface. Traffic. 2008;9(10):1571–80.

    Article  CAS  PubMed  Google Scholar 

  • Herman EM. Endoplasmic reticulum bodies: solving the insoluble. Curr Opin Plant Biol. 2008;11(6):672–9.

    Article  CAS  PubMed  Google Scholar 

  • Herman E, Schmidt M. Endoplasmic reticulum to vacuole trafficking of endoplasmic reticulum bodies provides an alternate pathway for protein transfer to the vacuole. Plant Physiol. 2004;136(3):3440–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hillmer S, Movafeghi A, Robinson DG, Hinz G. Vacuolar storage proteins are sorted in the cis-cisternae of the pea cotyledon Golgi apparatus. J Cell Biol. 2001;152(1):41–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hohl I, Robinson DG, Chrispeels MJ, Hinz G. Transport of storage proteins to the vacuole is mediated by vesicles without a clathrin coat. J Cell Sci. 1996;109(10):2539–50.

    CAS  PubMed  Google Scholar 

  • Hurley JH, Hanson PI. Membrane budding and scission by the ESCRT machinery: it’s all in the neck. Nat Rev Mol Cell Biol. 2010;11(8):556–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ibl V, Kapusi E, Arcalis E, Kawagoe Y, Stoger E. Fusion, rupture, and degeneration: the fate of in vivo-labelled PSVs in developing barley endosperm. J Exp Bot. 2014;65(12):3249–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishida H, Izumi M, Wada S, Makino A. Roles of autophagy in chloroplast recycling. Biochim Biophys Acta. 2014;1837(4):512–21.

    Article  CAS  PubMed  Google Scholar 

  • Jiang L, Rogers JC. Integral membrane protein sorting to vacuoles in plant cells: evidence for two pathways. J Cell Biol. 1998;143(5):1183–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang L, Phillips TE, Hamm CA, Drozdowicz YM, Rea PA, Maeshima M, Rogers SW, Rogers JC. The protein storage vacuole: a unique compound organelle. J Cell Biol. 2001;155(6):991–1002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jolliffe NA, Brown JC, Neumann U, Vicre M, Bachi A, Hawes C, Ceriotti A, Roberts LM, Frigerio L. Transport of ricin and 2S albumin precursors to the storage vacuoles of Ricinus communis endosperm involves the Golgi and VSR-like receptors. Plant J. 2004;39(6):821–33.

    Article  CAS  PubMed  Google Scholar 

  • Kolb C, Nagel MK, Kalinowska K, Hagmann J, Ichikawa M, Anzenberger F, Alkofer A, Sato MH, Braun P, Isono E. FYVE1 is essential for vacuole biogenesis and intracellular trafficking in Arabidopsis. Plant Physiol. 2015;167(4):1361–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leigh RA. The plant vacuole. San Diego: Academic Press; 1997.

    Google Scholar 

  • Li F, Vierstra RD. Autophagy: a multifaceted intracellular system for bulk and selective recycling. Trends Plant Sci. 2012;17(9):526–37.

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Bassham DC. Autophagy: pathways for self-eating in plant cells. Annu Rev Plant Biol. 2012;63:215–37.

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Bassham DC. Degradation of the endoplasmic reticulum by autophagy in plants. Autophagy. 2013;9(4):622–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marty F. Cytochemical studies on GERL, provacuoles, and vacuoles in root meristematic cells of euphorbia. Proc Natl Acad Sci USA. 1978;75(2):852–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marty F. Plant vacuoles. Plant Cell. 1999;11(4):587–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michaeli S, Galili G. Degradation of organelles or specific organelle components via selective autophagy in plant cells. Int J Mol Sci. 2014;15(5):7624–38.

    Article  PubMed  PubMed Central  Google Scholar 

  • Michaeli S, Galili G, Genschik P, Fernie AR, Avin-Wittenberg T. Autophagy in plants – What’s new on the menu? Trends Plant Sci. 2016;21(2):134–44.

    Article  CAS  PubMed  Google Scholar 

  • Okita TW, Rogers JC. Compartmentation of proteins in the endomembrane system of plant cells. Annu Rev Plant Physiol Plant Mol Biol. 1996;47:327–50.

    Article  CAS  PubMed  Google Scholar 

  • Otegui MS, Herder R, Schulze J, Jung R, Staehelin LA. The proteolytic processing of seed storage proteins in Arabidopsis embryo cells starts in the multivesicular bodies. Plant Cell. 2006;18(10):2567–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papanikou E, Glick BS. Golgi compartmentation and identity. Curr Opin Cell Biol. 2014;29:74–81.

    Article  CAS  PubMed  Google Scholar 

  • Paris N, Stanley CM, Jones RL, Rogers JC. Plant cells contain two functionally distinct vacuolar compartments. Cell. 1996;85(4):563–72.

    Article  CAS  PubMed  Google Scholar 

  • Pedrazzini E, Komarova NY, Rentsch D, Vitale A. Traffic routes and signals for the Tonoplast. Traffic. 2013;14(6):622–28.

    Google Scholar 

  • Rabouille C, Klumperman J. Opinion: the maturing role of COPI vesicles in intra-Golgi transport. Nat Rev Mol Cell Biol. 2005;6(10):812–7.

    Article  CAS  PubMed  Google Scholar 

  • Reyes FC, Chung T, Holding D, Jung R, Vierstra R, Otegui MS. Delivery of prolamins to the protein storage vacuole in maize aleurone cells. Plant Cell. 2011;23(2):769–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robinson DG. The Golgi apparatus and the plant secretory pathway. Oxford: Blackwell publishing; 2003.

    Google Scholar 

  • Robinson DG, Neuhaus JM. Receptor-mediated sorting of soluble vacuolar proteins: myths, facts, and a new model. J Exp Bot. 2016;67(15):4435–49.

    Google Scholar 

  • Robinson DG, Bäumer M, Hinz G, Hohl I. Vesicle transfer of storage proteins to the vacuole: the role of the Golgi apparatus and multivesicular bodies. J Plant Physiol. 1998;152(6):659–67.

    Article  CAS  Google Scholar 

  • Robinson DG, Herranz M-C, Bubeck J, Pepperkok R, Ritzenthaler C. Membrane dynamics in the early secretory pathway. Crit Rev Plant Sci. 2007;26(4):199–225.

    Article  CAS  Google Scholar 

  • Robinson DG, Hinz G, Holstein SEH. The molecular characterization of transport vesicles. In: Soll J, editor. Protein trafficking in plant cells. Netherlands: Springer Science & Business Media; 2012.

    Google Scholar 

  • Rogers JC. Internal membranes in maize aleurone protein storage vacuoles: beyond autophagy. Plant Cell 2011;23(12):4168–71; author reply 4171–2.

    Google Scholar 

  • Rojas-Pierce M. Targeting of tonoplast proteins to the vacuole. Plant Sci. 2013;211:132–6.

    Article  CAS  PubMed  Google Scholar 

  • Rojo E, Gillmor CS, Kovaleva V, Somerville CR, Raikhel NV. VACUOLELESS1 is an essential gene required for vacuole formation and morphogenesis in Arabidopsis. Dev Cell. 2001;1(2):303–10.

    Article  CAS  PubMed  Google Scholar 

  • Scheuring D, Lofke C, Kruger F, Kittelmann M, Eisa A, Hughes L, Smith RS, Hawes C, Schumacher K, Kleine-Vehn J. Actin-dependent vacuolar occupancy of the cell determines auxin-induced growth repression. Proc Natl Acad Sci USA. 2016;113(2):452–7.

    Article  CAS  PubMed  Google Scholar 

  • Shain-Dow Kung S-FY. Discoveries in plant biology. Singapore: World Scientific; 1998.

    Google Scholar 

  • Shen J, Ding Y, Gao C, Rojo E, Jiang L. N-linked glycosylation of AtVSR1 is important for vacuolar protein sorting in Arabidopsis. Plant J. 2014;80(6):977–92.

    Article  CAS  PubMed  Google Scholar 

  • Takahashi H, Saito Y, Kitagawa T, Morita S, Masumura T, Tanaka K. A novel vesicle derived directly from endoplasmic reticulum is involved in the transport of vacuolar storage proteins in rice endosperm. Plant Cell Physiol. 2005;46(1):245–9.

    Article  CAS  PubMed  Google Scholar 

  • van Doorn WG, Papini A. Ultrastructure of autophagy in plant cells: a review. Autophagy. 2013;9(12):1922–36.

    Article  PubMed  Google Scholar 

  • Viotti C. ER and vacuoles: never been closer. Front Plant Sci. 2014;5:20.

    Article  PubMed  PubMed Central  Google Scholar 

  • Viotti C, Krüger F, Krebs M, Neubert C, Fink F, Lupanga U, Scheuring D, Boutté Y, Frescatada-Rosa M, Wolfenstetter S, Sauer N, Hillmer S, Grebe M, Schumacher K. The endoplasmic reticulum is the main membrane source for biogenesis of the lytic vacuole in Arabidopsis. Plant Cell. 2013;25(9):3434–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vitale A, Hinz G. Sorting of proteins to storage vacuoles: how many mechanisms? Trends Plant Sci. 2005;10(7):316–23.

    Article  CAS  PubMed  Google Scholar 

  • Wagner GJ, Siegelman HW. Large-scale isolation of intact vacuoles and isolation of chloroplasts from protoplasts of mature plant tissues. Science. 1975;190(4221):1298–9.

    Article  Google Scholar 

  • Wang X, Cai Y, Wang H, Zeng Y, Zhuang X, Li B, Jiang L. Trans-Golgi network-located AP1 gamma adaptins mediate dileucine motif-directed vacuolar targeting in Arabidopsis. Plant Cell. 2014;26(10):4102–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiang L, Etxeberria E, Van den Ende W. Vacuolar protein sorting mechanisms in plants. FEBS J. 2013;280(4):979–93.

    Article  CAS  PubMed  Google Scholar 

  • Zeng Y, Chung KP, Li B, Lai CM, Lam SK, Wang X, Cui Y, Gao C, Luo M, Wong K-B, Schekman R, Jiang L. Unique COPII component AtSar1a/AtSec23a pair is required for the distinct function of protein ER export in Arabidopsis thaliana. Proc Natl Acad Sci. 2015;112(46):14360–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhuang X, Cui Y, Gao C, Jiang L. Endocytic and autophagic pathways crosstalk in plants. Curr Opin Plant Biol. 2015;28:39–47.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liwen Jiang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this entry

Cite this entry

Wang, X., Chung, K.P., Jiang, L. (2016). Vacuole Biogenesis in Plants. In: Assmann, S., Liu, B. (eds) Plant Cell Biology. The Plant Sciences, vol 20. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7881-2_21-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7881-2_21-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7881-2

  • Online ISBN: 978-1-4614-7881-2

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics