Skip to main content

Advertisement

Log in

Total oxidative/anti-oxidative status and relation to bone mineral density in osteoporosis

  • Original Article
  • Published:
Rheumatology International Aims and scope Submit manuscript

Abstract

The aim of this study was to evaluate the total antioxidant status (TAS), total oxidative status (TOS) and oxidative stress index (OSI) in patients with postmenopausal osteoporosis. We also investigate the relation between bone mineral density and oxidative/antioxidative parameters. Thirty-nine patients with osteoporosis and 26 healthy controls were included in the study. Plasma TAS, TOS levels were determined by using a novel automated methods. Plasma TOS and OSI value were significantly higher, and plasma TAS level was lower in patients than in healthy controls (P < 0.001 for all). There was a significant negative correlation between OSI and BMD in lumbar and femoral neck region (r = −0.63, P < 0.001; r = 0.40, P = 0.018). The results of this study indicated that increased osteoclastic activity and decreased osteoblastic activity may be associated with an imbalance between oxidant and antioxidant status in postmenopausal osteoporosis. Therefore, supplementation of antioxidant-enriched diet to the therapy might shed light on the development of novel therapeutic strategies for osteoporosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Compston JE, Papapoulos SE, Blanchard F (1998) Report on osteoporosis in the European community: current status and recommendations for the future. Osteoporos Int 8:531–534

    Article  PubMed  CAS  Google Scholar 

  2. Gabriel SE, Tosteson AN, Leibson CL, Crowson CS, Pond GR, Hammond CS, Melton LJ (2002) Direct medical costs attributable to osteoporotic fractures. Osteoporos Int 13:323–330

    Article  PubMed  CAS  Google Scholar 

  3. The European prospective osteoporosis study (EPOS) group (2002) J Bone Miner Res 17:716–724

    Article  Google Scholar 

  4. Mueller G, Russell RG (2003) Osteoporosis: pathogenesis and clinical intervention. Biochem Soc Trans 31:462–464

    Article  PubMed  Google Scholar 

  5. Nathan CF, Tsunawaki S (1986) Secretion of toxic oxygen products by macrophages: regulatory cytokines and their effects on the oxidase. Ciba Found Symp 118:211–230

    PubMed  Google Scholar 

  6. Brown JP, Josse RG (2002) Clinical practice guidelines for the diagnosis and management of osteoporosis in Canada. For the Scientific Advisory Council of the Osteoporosis Society of Canada. CMAJ 167:1–34

    Google Scholar 

  7. Gur A, Sarac AJ, Nas K, Cevik R (2004) The relationship between educational level and bone mineral density in postmenopausal women. BMC Fam Pract 5:18

    Article  PubMed  Google Scholar 

  8. Teitelbaum SL (2000) Bone resorption by osteoclasts. Science 289:1504–1508

    Article  PubMed  CAS  Google Scholar 

  9. Udagawa N, Takahashi N, Akatsu T, Sasaki T, Yamaguchi A, Kodama H, Martin TJ, Suda T (1989) The bone marrow-derived stromal cell lines MC3T3-G2/PA6 and ST2 support osteoclast-like cell differentiation in cocultures with mouse spleen cells. Endocrinology 125:1805–1813

    Article  PubMed  CAS  Google Scholar 

  10. Salim A, Nacamuli RP, Morgan EF, Giaccia AJ, Longaker MT (2004) Transient changes in oxygen tension inhibit osteogenic differentiation and Runx2 expression in osteoblasts. J Biol Chem 279:40007–40016

    Article  PubMed  CAS  Google Scholar 

  11. Arnett TR, Gibbons DC, Utting JC, Orriss IR, Hoebertz A, Rosendaal M, Meghji S (2003) Hypoxia is a major stimulator of osteoclast formation and bone resorption. J Cell Physiol 196:2–8

    Article  PubMed  CAS  Google Scholar 

  12. Galli F, Piroddi M, Annetti C, Aisa C, Floridi E, Floridi A (2005) Oxidative stress and reactive oxygen species. Contrib Nephrol 149:240–260

    Article  PubMed  CAS  Google Scholar 

  13. Halliwell B (1994) Free radicals, antioxidants, and human disease: curiosity, cause, or consequence? Lancet 344:721–724

    Article  PubMed  CAS  Google Scholar 

  14. Aruoma OI (1996) Characterization of drugs as antioxidant prophylactics. Free Radic Biol Med 20:675–705

    Article  PubMed  CAS  Google Scholar 

  15. Sontakke AN, Tare RS (2002) A duality in the roles of reactive species with respect to bone metabolism. Clin Chim Acta 318:145–148

    Article  PubMed  CAS  Google Scholar 

  16. Yang S, Madyastha P, Bingel S, Ries W, Key L (2001) A new superoxide-generating oxidase in murine osteoclasts. J Biol Chem 276:5452–5458

    Article  PubMed  CAS  Google Scholar 

  17. Dreher I, Schuetze N, Baur A, Hesse K, Schneider D, Koehrle J, Jakob F (1998) Selenoproteins are expressed in fetal human osteoblast-like cells. Biochem Biophys Res Commun 245:101–107

    Article  PubMed  CAS  Google Scholar 

  18. Fuller K, Lean JM, Bayley KE, Wani MR, Chambers TJ (2000) A role for TGF-β in osteoclast differentiation and survival. J Cell Sci 113:2445–2453

    PubMed  CAS  Google Scholar 

  19. Varenna M, Binelli L, Zucchi F, Rossi V, Sinigaglia L (2003) Prevalence of osteoporosis and fractures in a migrant population from southern to northern Italy: a cross-sectional, comparative study. Osteoporos Int 14:734–740

    Article  PubMed  CAS  Google Scholar 

  20. Erel O (2004) A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin Biochem 37:277–285

    Article  PubMed  CAS  Google Scholar 

  21. Erel O (2005) A new automated colorimetric method for measuring total oxidant status. Clin Biochem 38:1103–1111

    Article  PubMed  CAS  Google Scholar 

  22. Lean JM, Davies JT, Fuller K, Jagger CJ, Kirstein B, Partington GA, Urry ZL, Chambers TJ (2003) A crucial role for thiol antioxidants in estrogen-deficiency bone loss. J Clin Invest 112:915–923

    Article  PubMed  CAS  Google Scholar 

  23. Maggio D, Barabani M, Pierandrei M, Polidori MC, Catani M, Mecocci P, Senin U, Pacifici R, Cherubini A (2003) Marked decrease in plasma antioxidants in aged osteoporotic women: results of a cross-sectional study. J Clin Endocrinol Metab 88:1523–1527

    Article  PubMed  CAS  Google Scholar 

  24. Bagis S, Tamer L, Sahin G (2005) Free radicals and antioxidants in primary fibromyalgia: an oxidative stress disorder? Rheumatol Int 25:188–190

    Article  PubMed  CAS  Google Scholar 

  25. Yalin S, Bagis S, Polat G, Dogruer N, Cenk Aksit S, Hatungil R, Erdogan C (2005) Is there a role of free oxygen radicals in primary male osteoporosis? Clin Exp Rheumatol 23:689–692

    PubMed  CAS  Google Scholar 

  26. Wolf RL, Cauley JA, Pettinger M, Jackson R, Lacroix A, Leboff MS (2005) Lack of a relation between vitamin and mineral antioxidants and bone mineral density: results from the Women’s Health Initiative. Am J Clin Nutr 82:581–588

    PubMed  CAS  Google Scholar 

  27. Garrett IR, Boyce BF, Oreffo RO, Bonewald L, Poser J, Mundy GR (1990) Oxygen-derived free radicals stimulate osteoclastic bone resorption in rodent bone in vitro and in vivo. J Clin Invest 85:632–639

    PubMed  CAS  Google Scholar 

  28. Eghbali-Fatourechi G, Khosla S, Sanal A, Boyle WC, Lacey DL, Riggs BL (2003) Role of RANK ligand in mediating increased bone resorption in early postmenopausal women. J Clin Invest 111:121–130

    Article  CAS  Google Scholar 

  29. Pacifici R (1996) Estrogen, cytokines, and pathogenesis of postmenopausal osteoporosis. J Bone Miner Res 11:1043–1051

    Article  PubMed  CAS  Google Scholar 

  30. Vural P, Akgul C, Canbaz M (2005) Effects of menopause and tibolone on antioxidants in postmenopausal women. Ann Clin Biochem 42:220–223

    Article  PubMed  CAS  Google Scholar 

  31. Isomura H, Fujie K, Shibata K, Inoue N, Iizuka T, Takebe G, Takahashi K, Nishihira J, Izumi H, Sakamoto W (2004) Bone metabolism and oxidative stress in postmenopausal rats with iron overload. Toxicology 197:93–100

    Article  PubMed  CAS  Google Scholar 

  32. Melhus H, Michaelsson K, Holmberg L, Wolk A, Ljunghall S (1999) Smoking, antioxidant vitamins, and the risk of hip fracture. J Bone Miner Res 14:129–135

    Article  PubMed  CAS  Google Scholar 

  33. Lee NK, Choi YG, Baik JY, Han SY, Jeong DW, Bae YS, Kim N, Lee SY (2005) A crucial role for reactive oxygen species in RANKL-induced osteoclast differentiation. Blood 106:852–859

    Article  PubMed  CAS  Google Scholar 

  34. Kim HJ, Chang EJ, Kim HM, Lee SB, Kim HD, Su Kim G, Kim HH (2006) Antioxidant alpha-lipoic acid inhibits osteoclast differentiation by reducing nuclear factor-kappaB DNA binding and prevents in vivo bone resorption induced by receptor activator of nuclear factor-kappaB ligand and tumor necrosis factor-alpha. Free Radic Biol Med 40:1483–1493

    Article  PubMed  CAS  Google Scholar 

  35. Varanasi SS, Francis RM, Berger CE, Papiha SS, Datta HK (1999) Mitochondrial DNA deletion associated oxidative stress and severe male osteoporosis. Osteoporos Int 10:143–149

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ozlem Altindag.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Altindag, O., Erel, O., Soran, N. et al. Total oxidative/anti-oxidative status and relation to bone mineral density in osteoporosis. Rheumatol Int 28, 317–321 (2008). https://doi.org/10.1007/s00296-007-0452-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00296-007-0452-0

Keywords

Navigation