Skip to main content
Log in

Hym1p affects cell cycle progression in Saccharomyces cerevisiae

  • Research Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

The Saccharomyces cerevisiae HYM1 gene is conserved among eukaryotes. The mammalian orthologue (called MO25) mediates signaling through the AMP-activated protein kinase and other related kinases, implicated in cell proliferation. In yeast, Hym1p plays a role in cellular morphogenesis and also promotes the daughter cell-specific localization of the Ace2p transcription factor. Here, we report that increased dosage of HYM1 apparently shortens the G1 phase of the cell cycle. In the absence of HYM1 or ACE2, mother and daughter cells divide with the same generation times. Genetic analysis of HYM1, ACE2 and CLN3 mutants suggests that these genes together contribute to the establishment of asynchronous mother–daughter cell divisions, but probably not in a linear pathway. Our overall data suggest that Hym1p has a regulatory role in cell cycle progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Baas AF, et al (2003) Activation of the tumour suppressor kinase LKB1 by the STE20-like pseudokinase STRAD. EMBO J 22:3062–3072

    Article  CAS  PubMed  Google Scholar 

  • Baganz F, Hayes A, Farquhar R, Butler PR, Gardner DC, Oliver SG (1998) Quantitative analysis of yeast gene function using competition experiments in continuous culture. Yeast 14:1417–1427

    Article  CAS  PubMed  Google Scholar 

  • Bidlingmaier S, Weiss EL, Seidel C, Drubin DG, Snyder M (2001) The Cbk1p pathway is important for polarized cell growth and cell separation in Saccharomyces cerevisiae. Mol Cell Biol 21:2449–2462

    Article  CAS  PubMed  Google Scholar 

  • Bogomolnaya LM, et al (2004) A new enrichment approach identifies genes that alter cell cycle progression in Saccharomyces cerevisiae. Curr Genet 45:350–359

    Article  CAS  PubMed  Google Scholar 

  • Boudeau J, et al (2003) MO25alpha/beta interact with STRADalpha/beta enhancing their ability to bind, activate and localize LKB1 in the cytoplasm. EMBO J 22:5102–5114

    Article  CAS  PubMed  Google Scholar 

  • Bryan BA, McGrew E, Lu Y, Polymenis M (2004) Evidence for control of nitrogen metabolism by a START-dependent mechanism in Saccharomyces cerevisiae. Mol Genet Genomics 271:72–81

    Article  CAS  PubMed  Google Scholar 

  • Carlson M, Botstein D (1982) Two differentially regulated mRNAs with different 5′ ends encode secreted with intracellular forms of yeast invertase. Cell 28:145–154

    Article  CAS  PubMed  Google Scholar 

  • Colman-Lerner A, Chin TE, Brent R (2001) Yeast Cbk1 and Mob2 activate daughter-specific genetic programs to induce asymmetric cell fates. Cell 107:739–750

    Article  CAS  PubMed  Google Scholar 

  • Cross FR (1988) DAF1, a mutant gene affecting size control, pheromone arrest, and cell cycle kinetics of Saccharomyces cerevisiae. Mol Cell Biol 8:4675–4684

    CAS  PubMed  Google Scholar 

  • Cross FR (1990) Cell cycle arrest caused by CLN gene deficiency in Saccharomyces cerevisiae resembles START-I arrest and is independent of the mating pheromone signalling pathway. Mol Cell Biol 10:6482–6490

    CAS  PubMed  Google Scholar 

  • Dorland S, Deegenaars ML, Stillman DJ (2000) Roles for the Saccharomyces cerevisiae SDS3, CBK1 and HYM1 genes in transcriptional repression by SIN3. Genetics 154:573–586

    CAS  PubMed  Google Scholar 

  • Fraschini R, Formenti E, Lucchini G, Piatti S (1999) Budding yeast Bub2 is localized at spindle pole bodies and activates the mitotic checkpoint via a different pathway from Mad2. J Cell Biol 145:979–991

    Article  CAS  PubMed  Google Scholar 

  • Giaever G et al (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418:387–391

    Article  CAS  PubMed  Google Scholar 

  • Hall DD, Markwardt DD, Parviz F, Heideman W (1998) Regulation of the Cln3-Cdc28 kinase by cAMP in Saccharomyces cerevisiae. EMBO J 17:4370–4378

    Article  CAS  PubMed  Google Scholar 

  • Hartwell LH, Unger MW (1977) Unequal division in Saccharomyces cerevisiae and its implications for the control of cell division. J Cell Biol 75:422–435

    Article  CAS  PubMed  Google Scholar 

  • Jorgensen P et al (2002) High-resolution genetic mapping with ordered arrays of Saccharomyces cerevisiae deletion mutants. Genetics 162:1091–1099

    CAS  PubMed  Google Scholar 

  • Kaiser C, Michaelis S, Mitchell A (1994) Methods in yeast genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.

    Google Scholar 

  • Karos M, Fischer R (1996) hymA (hypha-like metulae), a new developmental mutant of Aspergillus nidulans. Microbiology 142:3211–3218

    CAS  PubMed  Google Scholar 

  • Karos M, Fischer R (1999) Molecular characterization of HymA, an evolutionarily highly conserved and highly expressed protein of Aspergillus nidulans. Mol Gen Genet 260:510–521

    Article  CAS  PubMed  Google Scholar 

  • Laabs TL, Markwardt DD, Slattery MG, Newcomb LL, Stillman DJ, Heideman W (2003) ACE2 is required for daughter cell-specific G1 delay in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 100:10275–10280

    Article  CAS  PubMed  Google Scholar 

  • Lew DJ (2000) Cell-cycle checkpoints that ensure coordination between nuclear and cytoplasmic events in Saccharomyces cerevisiae. Curr Opin Genet Dev 10:47–53

    Article  CAS  PubMed  Google Scholar 

  • Lew DJ, Burke DJ (2003) The spindle assembly and spindle position checkpoints. Annu Rev Genet 37:251–282

    Article  CAS  PubMed  Google Scholar 

  • Lizcano JM, et al (2004) LKB1 is a master kinase that activates 13 kinases of the AMPK subfamily, including MARK/PAR-1. EMBO J 23:833–843

    Article  CAS  PubMed  Google Scholar 

  • Longtine MS, et al (1998) Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14:953–961

    Article  CAS  PubMed  Google Scholar 

  • Lord PG, Wheals AE (1983) Rate of cell cycle initiation of yeast cells when cell size is not a rate-determining factor. J Cell Sci 59:183–201

    CAS  PubMed  Google Scholar 

  • Milburn CC, Boudeau J, Deak M, Alessi DR, Aalten DM van (2004) Crystal structure of MO25 alpha in complex with the C terminus of the pseudo kinase STE20-related adaptor. Nat Struct Mol Biol 11:193–200

    Article  CAS  PubMed  Google Scholar 

  • Nash R, Tokiwa G, Anand S, Erickson K, Futcher AB (1988) The WHI1+ gene of Saccharomyces cerevisiae tethers cell division to cell size and is a cyclin homolog. EMBO J 7:4335–4346

    CAS  PubMed  Google Scholar 

  • Nelson B et al (2003) RAM: a conserved signaling network that regulates Ace2p transcriptional activity and polarized morphogenesis. Mol Biol Cell 14:3782–3803

    Google Scholar 

  • Polymenis M, Schmidt EV (1997) Coupling of cell division to cell growth by translational control of the G1 cyclin CLN3 in yeast. Genes Dev 11:2522–2531

    CAS  PubMed  Google Scholar 

  • Pringle JR, Hartwell LH (1981) The Saccharomyces cerevisiae cell cycle. In: Strathern JD, Jones EW, Broach JR (eds) The molecular biology of the yeast Saccharomyces. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y., pp 97–142

    Google Scholar 

  • Racki WJ, Becam AM, Nasr F, Herbert CJ (2000) Cbk1p, a protein similar to the human myotonic dystrophy kinase, is essential for normal morphogenesis in Saccharomyces cerevisiae. EMBO J 19:4524–4532

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.

    Google Scholar 

  • Schneper L, Krauss A, Miyamoto R, Fang S, Broach JR (2004) The Ras/protein kinase A pathway acts in parallel with the Mob2/Cbk1 pathway to effect cell cycle progression and proper bud site selection. Eukaryot Cell 3:108–120

    Article  CAS  PubMed  Google Scholar 

  • Weiss EL, Kurischko C, Zhang C, Shokat K, Drubin DG, Luca FC (2002) The Saccharomyces cerevisiae Mob2p-Cbk1p kinase complex promotes polarized growth and acts with the mitotic exit network to facilitate daughter cell-specific localization of Ace2p transcription factor. J Cell Biol 158:885–900

    Article  CAS  PubMed  Google Scholar 

  • Zettel MF, et al (2003) The budding index of Saccharomyces cerevisiae deletion strains identifies genes important for cell cycle progression. FEMS Microbiol Lett 223:253–258

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Miller for flow cytometry and thank F. Cross and B. Futcher for reagents. This work was supported by grants from the National Institutes of Health to M.P. (GM062377) and R.A. (GM058770).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Polymenis.

Additional information

Communicated by S. Hohmann

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bogomolnaya, L.M., Pathak, R., Guo, J. et al. Hym1p affects cell cycle progression in Saccharomyces cerevisiae. Curr Genet 46, 183–192 (2004). https://doi.org/10.1007/s00294-004-0527-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-004-0527-3

Keywords

Navigation