Skip to main content
Log in

Biosurfactant Production by Antarctic Facultative Anaerobe Pantoea sp. During Growth on Hydrocarbons

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The facultative anaerobe Pantoea sp. strain A-13, isolated from ornithogenic soil of Dewart Island (Frazier Islands), Antarctica, produced glycolipid biosurfactants when grown on n-paraffins or kerosene as the sole source of carbon and energy. Hemolysis of erythrocytes, growth inhibition of Bacillus subtilis, and thin-layer chromatography studies have suggested that the secreted glycolipids are rhamnolipids. Glycolipids produced by kerosene-grown cells decreased the surface tension at the air–water interface to 30 mN/m and possessed a low critical micelle concentration value of 40 mg/l, which indicated high surface activity. They efficiently emulsified aromatic hydrocarbons, kerosene, and n-paraffins. Biosurfactant production contributed to an increase in cell hydrophobicity, which correlated with increased growth of the strain on tested hydrocarbons. According to the results, the Antarctic biosurfactant-producing strain Pantoea sp. A-13 appears to be valuable source for application in accelerated environmental bioremediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

Literature Cited

  1. Aislabie J, Balks M, Astori N, Stevenson G, Symons R (1999) Polycyclic aromatic hydrocarbons in fuel oil–contaminated soils, Antarctica. Chemosphere 39:2201–2207

    Article  PubMed  CAS  Google Scholar 

  2. Aislabie J, McLeod M, Fraser R (1998) Potential of biodegradation of hydrocarbons in soil from the Ross Dependency, Antarctica. Appl Microbiol Biotechnol 49:210–214

    Article  CAS  Google Scholar 

  3. Asis CA, Adashi K (2004) Isolation of endophytic diazotroph Pantoea agglomerans and nondiazotroph Enterobacter asburiae from sweet potato stem in Japan. Lett Appl Microbiol 38:19–23

    Article  PubMed  Google Scholar 

  4. Baraniecki CA, Aislabie J, Foght JM (2002) Characterization of Sphingomonas sp. Ant 17, an aromatic hydrocarbon-degrading bacterium isolated from Antarctic soil. Microbial Ecol 43:44–54

    Article  CAS  Google Scholar 

  5. Batista SB, Mounteer AH, Amorim FR, Totola MR (2006) Isolation and characterization of biosurfactant/bioemulsifier from petroleum-contaminated sites. Bioresour Technol 97:868–875

    Article  PubMed  CAS  Google Scholar 

  6. Beal R, Betts WB (2000) Role of rhamnolipid biosurfactants in the uptake and mineralization of hexadecane in Pseudomonas aeruginosa. J Appl Microbiol 89:158–168

    Article  PubMed  CAS  Google Scholar 

  7. Berg G, Seech AG, Lee H, Trevors JT (1990) Identification and characterization of a soil bacterium with extracellular emulsifying activity. J Environ Sci Health 25:753–764

    Article  Google Scholar 

  8. Bergey’s manual of systematic bacteriology. Baltimore: Williams and Wilkins

  9. Bodour AA, Maier RM (2002) Biosurfactants: types, screening methods, and applications. In: Bitton G (ed) Encyclopedia of environmental microbiology. Hoboken, New Jersey: John Wiley and Sons Inc, pp 750–770

    Google Scholar 

  10. Boulton CA, Ratledge C (1987) Biosynthesis of lipid precursors to surfactant production. In: Kosaric N (ed) Biosurfactants. Surfactant Science Series. New York: Marcel Dekker 25:48–83

  11. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analyt Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  12. Desai JD, Banat IM (1997) Microbial production of surfactants and their commercial potential. Microbiol Mol Biol Rev 61:47–64

    PubMed  CAS  Google Scholar 

  13. Diaz E, Fernandez A, Prieto MA, Garcia JL (2001) Bioremediation of aromatic compounds by Escherichia coli. Microbiol Mol Biol Rev 65:523–569

    Article  PubMed  CAS  Google Scholar 

  14. Gavini F, Mergaert J, Beji A, Mielcarek C, Izard D, Kersters K, De Ley J (1989) Transfer of Enterobacter agglomerans (Beijerinck 1888) Ewing and Fife 1972 to Pantoea gen. nov. as Pantoea agglomerans comb. nov. and description of Pantoea dispersa sp. nov. Int J Syst Bacteriol 39:3337–3345

    Google Scholar 

  15. Haba E, Espuny MJ, Busquets M, Manresa A (2000) Screening and production of rhamnolipids by Pseudomonas aeruginosa 47T2 NCIB 40044 from waste frying oils. J Appl Microbiol 88:379–387

    Article  PubMed  CAS  Google Scholar 

  16. Harada H, Ishikawa H (1997) Phylogenetical relationship based on groE genes among phenotypically related Enterobacter, Pantoea, Klebsiella, Serratia, and Erwinia species. J Gen Appl Microbiol 43:355–360

    PubMed  CAS  Google Scholar 

  17. Hommel RK (1994) Formation and function of biosurfactants for degradation of water-insoluble substrates. In: Ratledge C (ed) Biochemistry of microbial biodegradation. Dordrecht: Kluwer Academic Publishers, pp 63–87

    Google Scholar 

  18. Itoch S, Honda H, Tomita F, Suzuki T (1971) Rhamnolipid produced by Pseudomonas aeruginosa grown on n-paraffin. J Antibiot 24:855–859

    Google Scholar 

  19. Johnson MK, Boese-Marrazzo D (1980) Production and properties of heat-stable extracellular hemolysin from Pseudomonas aeruginosa. Inf Immun 29:1028–1033

    CAS  Google Scholar 

  20. Kates M (1972) Techniques of lipidology. In: Work TSWE (ed) Biochemistry and biochemical biology. Amsterdam: North-Holland Publishing Co, pp 393–444

    Google Scholar 

  21. Kennicutt II, MC McDonald TJ, Denoux GJ, McDonald SJ (1992) Hydrocarbon contamination on the Antarctic Peninsula: I. Arthur Harbor—subtidal sediments. Mar Pollut Bull 24:499–506

    Article  CAS  Google Scholar 

  22. Kitamoto D, Isoda H, Nakahara T (2002) Functions and potential applications of glycolipid biosurfactants: From energy-saving materials to gene delivery carriers. J Biosci Bioeng 94:187–201

    Article  PubMed  CAS  Google Scholar 

  23. Koch AK, Kappeli O, Fiechter A, Reiser (1991) Hydrocarbon assimilation and biosurfactant production in Pseudomonas aeruginosa mutants. J Bacteriol 173:4212–4219

    PubMed  CAS  Google Scholar 

  24. Lang S, Wullbtandt D (1999) Rhamnose lipids: Biosynthesis, microbial production and application potential. Appl Microbiol Biotechnol 51:22–32

    Article  PubMed  CAS  Google Scholar 

  25. Leahy JG, Colwell RR (1990) Microbial degradation of hydrocarbons in the environment. Microbiol Rev 54:305–315

    PubMed  CAS  Google Scholar 

  26. Makkar RS, Cameotra SS (2002) An update on the use of unconventional substrates for biosurfactant production and their new applications. Appl Microbiol Biotechnol 58:428–434

    Article  PubMed  CAS  Google Scholar 

  27. Mulligan CN (2005) Environmental applications for biosurfactants. Environ Pollution 133:183–198

    Article  CAS  Google Scholar 

  28. Pepi M, Cesaro A, Liut G, Baldi F (2005) An Antarctic psychrotrophic bacterium Halomonas sp. ANT-3b, growing on n-hexadecane, produces a new emulsifying glycolipid. FEMS Microb Ecol 53:157–166

    Article  CAS  Google Scholar 

  29. Pruthi V, Cameotra SS (1997) Production and properties of a biosurfactant synthesized by Arthrobacter protophormiae—an Antarctic strain. World J Microbiol Biotechnol 13:137–139

    CAS  Google Scholar 

  30. Ron EZ, Rosenberg E (2002) Biosurfactants and oil bioremediation. Current Opin Biotechnol 13:249–252

    Article  CAS  Google Scholar 

  31. Rosenberg E (1993) Exploiting microbial growth on hydrocarbon: New markets. Trends Biotechnol 11:419–424

    Article  Google Scholar 

  32. Rosenberg M, Gutnick D, Rosenberg E (1980) Adherence of bacteria to hydrocarbons: A simple method for measuring cell surface hydrophobicity. FEMS Microbiol Lett 9:29–33

    Article  CAS  Google Scholar 

  33. Sarma PM, Bhattacharya D, Krishnan S, Lal B (2004) Degradation of polycyclic aromatic hydrocarbons by a newly discovered enteric bacterium, Leclercia adecarboxylata. Appl Environ Microbiol 70:3163–3166

    Article  PubMed  CAS  Google Scholar 

  34. Scholz-Seidel C, Ruppel S (1992) Nitrogenase and phytohormone activities of Pantoea agglomerans in culture and their reflection in combination with wheat plants. Zentralbl Microbiol 147:319–328

    CAS  Google Scholar 

  35. Shulga A, Karpenko Е, Vildanova-Martsishin R, Turovsky A, Soltys M (2000) Biosurfactant-enhanced remediation of oil-contaminated environments. Adsorpt Sci Technol 18:171–176

    Article  CAS  Google Scholar 

  36. Van Loosdrecht MC, Lyklema J, Norde W, Schraa G, Zehnder AJB (1987) The role of bacterial cell wall hydrophobicity in adhesion. Appl Environ Microbiol 53:1893–1897

    PubMed  Google Scholar 

  37. Vasileva-Tonkova E, Gesheva V (2004) Potential for biodegradation of hydrocarbons by microorganisms isolated from Antarctic soils. Z Naturforsch 59c:140–145

    Google Scholar 

  38. Vasileva-Tonkova E, Gesheva V (2005) Glycolipids produced by Аntarctic Nocardioides sp. during growth on n-paraffin. Process Biochem 40:2387–2391

    Article  CAS  Google Scholar 

  39. Wei YH, Chou CL, Chang JS (2005) Rhamnolipid production by indigenous Pseudomonas aeruginosa J4 originating from petrochemical wastewater. Biochem Eng J 27:146–154

    Article  CAS  Google Scholar 

  40. Wright SAI, Zumoff CH, Schneider L, Beer SV (2001) Pantoea agglomerans strain EH318 produces two antibiotics that inhibit Erwinia amylovora in vitro. Appl Environ Microbiol 67:284–292

    Article  PubMed  CAS  Google Scholar 

  41. Wu L, Birch RG (2004) Characterization of Pantoea dispersa UQ68J: Producer of a highly efficient sucrose isomerase for isomaltose biosynthesis. J Appl Microbiol 97:93–103

    Article  PubMed  CAS  Google Scholar 

  42. Zhang Y, Miller RM (1994) Effect of a Pseudomonas rhamnolipid biosurfactant on cell hydrophobicity and biodegradation of octadecane. Appl Environ Microbiol 60:2101–2106

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evgenia Vasileva-Tonkova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vasileva-Tonkova, E., Gesheva, V. Biosurfactant Production by Antarctic Facultative Anaerobe Pantoea sp. During Growth on Hydrocarbons. Curr Microbiol 54, 136–141 (2007). https://doi.org/10.1007/s00284-006-0345-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-006-0345-6

Keywords

Navigation