Skip to main content

Advertisement

Log in

Low-temperature heat capacities, entropies and enthalpies of Mg2SiO4 polymorphs, and α−β−γ and post-spinel phase relations at high pressure

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

The low-temperature isobaric heat capacities (C p) of β- and γ-Mg2SiO4 were measured at the range of 1.8–304.7 K with a thermal relaxation method using the Physical Property Measurement System. The obtained standard entropies (S°298) of β- and γ-Mg2SiO4 are 86.4 ± 0.4 and 82.7 ± 0.5 J/mol K, respectively. Enthalpies of transitions among α-, β- and γ-Mg2SiO4 were measured by high-temperature drop-solution calorimetry with gas-bubbling technique. The enthalpies of the α−β and β−γ transitions at 298 K (ΔH°298) in Mg2SiO4 are 27.2 ± 3.6 and 12.9 ± 3.3 kJ/mol, respectively. Calculated α−β and β−γ transition boundaries were generally consistent with those determined by high-pressure experiments within the errors. Combining the measured ΔH°298 and ΔS°298 with selected data of in situ X-ray diffraction experiments at high pressure, the ΔH°298 and ΔS°298 of the α−β and β−γ transitions were optimized. Calculation using the optimized data tightly constrained the α−β and β−γ transition boundaries in the P, T space. The slope of α−β transition boundary is 3.1 MPa/K at 13.4 GPa and 1,400 K, and that of β−γ boundary 5.2 MPa/K at 18.7 GPa and 1,600 K. The post-spinel transition boundary of γ-Mg2SiO4 to MgSiO3 perovskite plus MgO was also calculated, using the optimized data on γ-Mg2SiO4 and available enthalpy and entropy data on MgSiO3 perovskite and MgO. The calculated post-spinel boundary with a Clapeyron slope of −2.6 ± 0.2 MPa/K is located at pressure consistent with the 660 km discontinuity, considering the error of the thermodynamic data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akaogi M, Ito E (1993a) Heat capacity of MgSiO3 perovskite. Geophys Res Lett 20:105–108

    Google Scholar 

  • Akaogi M, Ito E (1993b) Refinement of enthalpy measurement of MgSiO3 perovskite and negative pressure–temperature slopes for perovskite-forming reactions. Geophys Res Lett 20:1839–1842

    Google Scholar 

  • Akaogi M, Ross NL, McMillan P, Navrotsky A (1984) The Mg2SiO4 polymorphs (olivine, modified spinel and spinel)—thermodynamic properties from oxide melt solution calorimetry, phase relations, and models of lattice vibrations. Am Mineral 69:499–512

    Google Scholar 

  • Akaogi M, Ito E, Navrotsky A (1989) Olivine-modified spinel–spinel transitions in the system Mg2SiO4–Fe2SiO4: calorimetric measurements, thermochemical calculation, and geophysical application. J Geophys Res 94:15671–15685

    Google Scholar 

  • Akaogi M, Yano M, Tejima Y, Iijima M, Kojitani H (2004a) High-pressure transitions of diopside and wollastonite: phase equilibria and thermochemistry of CaMgSi2O6, CaSiO3 and CaSi2O5–CaTiSiO5 system. Phys Earth Planet Inter 143–144:145–156

    Article  Google Scholar 

  • Akaogi M, Kamii N, Kishi A, Kojitani H (2004b) Calorimetric study on high-pressure transitions in KAlSi3O8. Phys Chem Miner 31:85–91

    Article  Google Scholar 

  • Anderson OL, Isaak D, Yamamoto S (1989) Anharmonicity and the equation of state for gold. J Appl Phys 65:1534–1543

    Article  Google Scholar 

  • Anderson OL, Isaak D, Oda H (1992) High-temperature elastic constant data on minerals relevant to geophysics. Rev Geophys 30:57–90

    Google Scholar 

  • Ashida T, Kume S, Ito E (1987) Thermodynamic aspects of phase boundary among α-, β-, and γ-Mg2SiO4. In: Manghnani MH, Syono Y (eds) High-pressure research in mineral physics. Terra Scientific Publishing, Tokyo/American Geophysical Union, Washington, pp 269–274

    Google Scholar 

  • Atake T, Inoue N, Kawaji H, Matsuzaka K, Akaogi M (2000) Low temperature heat capacity of the high-pressure-phase of SiO2, coesite, and calculation of the α-quartz-to-coesite equilibrium boundary. J Chem Thermodyn 32:217–227

    Article  Google Scholar 

  • Berman RG (1988) Internally-consistent thermodynamic data for minerals in the system Na2O-K2O-CaO-MgO-FeO-Fe2O3−Al2O3−SiO2−TiO2−H2O-CO2. J Petrol 29:445–522

    Google Scholar 

  • Berman RG, Brown TH (1985) Heat capacity of minerals in the system Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2-H2O-CO2: representation, estimation and high-temperature extrapolation. Contrib Mineral Petrol 89:168–183

    Article  Google Scholar 

  • Brown JM (1999) The NaCl pressure standard. J Appl Phys 86:5801–5808

    Article  Google Scholar 

  • Chopelas A (1990) Thermal properties of forsterite at mantle pressures derived from vibrational spectroscopy. Phys Chem Miner 17:149–156

    Google Scholar 

  • Chopelas A (1991) Thermal properties of β-Mg2SiO4 at mantle pressures derived from vibrational spectroscopy: implications for the mantle at 400 km depth. J Geophys Res 96:11817–11829

    Google Scholar 

  • Chopelas A, Boehler R, Ko T (1994) Thermodynamics and behavior of γ-Mg2SiO4 at high pressure: implications for Mg2SiO4 phase equilibrium. Phys Chem Miner 21:351–359

    Article  Google Scholar 

  • Dachs E, Bertoldi C (2005) Precision and accuracy of the heat-pulse calorimetric technique: low-temperature heat capacities of milligram-sized synthetic mineral samples. Eur J Mineral 17:251–261

    Article  Google Scholar 

  • Dachs E, Geiger CA (2006) Heat capacities and entropies of mixing of pyrope–grossular (Mg3Al2Si3O12–Ca3Al2Si3O12) garnet solid solutions: a low-temperature calorimetric and a thermodynamic investigation. Am Mineral 91:894–906

    Article  Google Scholar 

  • Decker DL (1971) High-pressure equation of state of NaCl, KCl, and CsCl. J Appl Phys 42:3239–3244

    Article  Google Scholar 

  • Fei Y, Mao HK, Shu J, Parthasarathy G, Bassett WA (1992) Simultaneous high-P, high-T X ray diffraction study of β−(Mg,Fe)2SiO4 to 26 GPa and 900 K. J Geophys Res 97:4489–4495

    Google Scholar 

  • Fei Y, Li J, Hirose K, Minarik W, Van Orman J, Sanloup C, van Westrenen W, Kamabayashi T, Funakoshi K (2004a) A critical evaluation of pressure scales at high temperatures by in situ X-ray diffraction measurements. Phys Earth Planet Inter 143–144:515–526

    Article  Google Scholar 

  • Fei Y, Orman JV, Li J, Westrenen Wv, Sanloup C, Minarik W, Hirose K, Komabayashi T, Walter M, Funakoshi K (2004b) Experimentally determined postspinel transformation boundary in Mg2SiO4 using MgO as an internal pressure standard and its geophysical implications. J Geophys Res 109. DOI 10.1029/2003JB002562

  • Funamori N, Yagi T, Utsumi W, Kondo T, Uchida T, Funamori M (1996) Thermoelastic properties of MgSiO3 perovskite determined by in situ X-ray observations up to 30 GPa and 2000 K. J Geophys Res 101:8257–8269

    Article  Google Scholar 

  • Gmelin E (1987) Low-temperature calorimetry: a particular branch of thermal analysis. Thermochim Acta 110:183–208

    Article  Google Scholar 

  • Hazen RM, Downs RT, Finger LW, Ko J (1993) Crystal chemistry of ferromagnesian silicate spinels: evidence for Mg–Si disorder. Am Mineral 78:1320–1323

    Google Scholar 

  • Hemingway BS, Bohlen SR, Hankins WB, Westrum EF, Kuskov OL (1998) Heat capacity and thermodynamic properties for coesite and jadeite, reexamination of the quartz–coesite equilibrium boundary. Am Mineral 83:409–418

    Google Scholar 

  • Horiuchi H, Sawamoto H (1981) β-Mg2SiO4: single-crystal X-ray diffraction study. Am Mineral 66:568–575

    Google Scholar 

  • Inoue T, Irifune T, Higo Y, Sanehira T, Sueda Y, Yamada A, Shinmei T, Yamazaki D, Ando J, Funakoshi K, Utsumi W (2006) The phase boundary between wadsleyite and ringwoodite in Mg2SiO4 determined by in situ X-ray diffraction. Phys Chem Miner 33:106–114

    Article  Google Scholar 

  • Irifune T, Nishiyama N, Kuroda K, Inoue T, Isshiki M, Utsumi W, Funakoshi K, Urakawa S, Uchida T, Katsura T, Ohtaka O (1998) The postspinel phase boundary in Mg2SiO4 determined by in situ X-ray diffraction. Science 279:1698–1700

    Article  Google Scholar 

  • Ito E, Takahashi E (1989) Postspinel transformations in the system Mg2SiO4–Fe2SiO4 and some geophysical implications. J Geophys Res 94:10637–10646

    Google Scholar 

  • Ito E, Yamada H (1982) Stability relations of silicate spinels, ilmenites and perovskites. In: Akimoto S, Manghnani MH (eds) High-pressure research in geophysics. Center for Academic Publications Japan, Tokyo, pp 405–419

    Google Scholar 

  • Ito E, Akaogi M, Topor L, Navrotsky A (1990) Negative pressure–temperature slopes for reactions forming MgSiO3 perovskite from calorimetry. Science 249:1275–1278

    Article  Google Scholar 

  • Jackson I, Niesler H (1982) The elasticity of periclase to 3 GPa and some geophysical implications. In: Akimoto S, Manghnani MH (eds) High-pressure research in geophysics. Center for Academic Publications Japan, Tokyo, pp 93–113

    Google Scholar 

  • Jacobs MHG, Oonk HAJ (2001) The Gibbs energy formulation of the α, β, and γ forms of Mg2SiO4 using Grover, Getting and Kennedy’s empirical relation between volume and bulk modulus. Phys Chem Miner 28:572–585

    Article  Google Scholar 

  • Katsura T, Ito E (1989) The system Mg2SiO4–Fe2SiO4 at high pressures and temperatures: precise determination of stabilities of olivine, modified spinel, and spinel. J Geophys Res 94:15663–15670

    Google Scholar 

  • Katsura T, Yamada H, Shinmei T, Kubo A, Ono S, Kanzaki M, Yoneda A, Walter MJ, Ito E, Urakawa S, Funakoshi K, Utsumi W (2003) Post-spinel transition in Mg2SiO4 determined by high P–T in situ X-ray diffractometry. Phys Earth Planet Inter 136:11–24

    Article  Google Scholar 

  • Katsura T, Yamada H, Nishikawa O, Song M, Kubo A, Shinmei T, Yokoshi S, Aizawa Y, Yoshino T, Walter MJ, Ito E (2004) Olivine–wadsleyite transition in the system (Mg,Fe)2SiO4. J Geophys Res 109:B02209. DOI 10.1029/2003JB002438

  • Lashley JC, Hundley MF, Migliori A, Sarrao JL, Pagliuso PG, Darling TW, Jaime M, Cooley JC, Hults WL, Morales L, Thoma DJ, Smith JL, Boerio-Goates J, Woodfield BF, Stewart GR, Fisher RA, Phillips NE (2003) Critical examination of heat capacity measurements made on a quantum design physical property measurement system. Cryogenics 43:369–378

    Article  Google Scholar 

  • Marumo F, Isobe M, Akimoto S (1977) Electron-density distribution in crystals of γ−Fe2SiO4 and γ−Co2SiO4. Acta Crystallogr B33:713–716

    Article  Google Scholar 

  • Matsui M, Nishiyama N (2002) Comparison between the Au and MgO pressure calibration standards at high temperature. Geophys Res Lett 29. DOI 10.1029/2001/GL014161

  • Matsui Y, Syono Y (1968) Unit cell dimensions of some synthetic olivine group solid solutions. Geochem J 2:51–59

    Google Scholar 

  • Matsui M, Parker SC, Leslie M (2000) The MD simulation of the equation of state of MgO: application as a pressure calibration standard at high temperature and high pressure. Am Mineral 85:312–316

    Google Scholar 

  • Meng Y, Weidner DJ, Gwanmesia GD, Liebermann RC, Vaughan MT, Wang Y, Leinenweber K, Pacalo RE, Yeganeh-Haeri A, Zhao Y (1993) In situ high P–T X ray diffraction studies on three polymorphs (α, β, γ) of Mg2SiO4. J Geophys Res 98:22199–22207

    Google Scholar 

  • Morishima H, Kato T, Suto M, Ohtani E, Urakawa S, Utsumi W, Shimomura O, Kikegawa T (1994) The phase boundary between α- and β-Mg2SiO4 determined by in situ X-ray observation. Science 265:1202–1203

    Article  Google Scholar 

  • Navrotsky A (1977) Calculation of effect of cation disorder on silicate phase boundaries. Earth Planet Sci Lett 33:437–442

    Article  Google Scholar 

  • Navrotsky A, Pintchovski FS, Akimoto S (1979) Calorimetric study of the stability of high pressure phases in the systems CoO–SiO2 and “FeO”–SiO2, and calculation of phase diagrams in MO–SiO2 systems. Phys Earth Planet Inter 19:275–292

    Article  Google Scholar 

  • Price GD, Parker SC, Leslie M (1987) The lattice dynamics and thermodynamics of the Mg2SiO4 polymorphs. Phys Chem Miner 15:181–190

    Article  Google Scholar 

  • Robie RA, Hemingway BS (1995) Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 Pascals) pressure and at higher temperatures. US Geol Surv 2131:461

    Google Scholar 

  • Robie RA, Hemingway BS, Takei H (1982) Heat capacities and entropies of Mg2SiO4, Mn2SiO4, and Co2SiO4 between 5 and 380 K. Am Mineral 67:470–482

    Google Scholar 

  • Sasaki S, Prewitt CT, Sato Y, Ito E (1982) Single-crystal X ray study of γ Mg2SiO4. J Geophys Res 87:7829–7832

    Article  Google Scholar 

  • Shim S, Duffy TS, Takemura K (2002) Equation of state of gold and its application to the phase boundaries near 660 km depth in the earth’s mantle. Earth Planet Sci Lett 203:729–739

    Article  Google Scholar 

  • Smyth JR, Frost D (2002) The effect of water on the 410-km discontinuity: an experimental study. Geophys Res Lett 29. DOI 10.1029/2001GL014418

  • Sorai M (2004) Comprehensive handbook of calorimetry and thermal analysis. Wiley, New York, 70 pp

    Google Scholar 

  • Speziale S, Zha C, Duffy TS, Hemley RJ, Mao HK (2001) Quasi-hydrostatic compression of magnesium oxide to 52 GPa: implications for the pressure–volume–temperature equation of state. J Geophys Res 106:515–528

    Article  Google Scholar 

  • Suzuki I (1975) Thermal expansion of periclase and olivine, and their anharmonic properties. J Phys Earth 23:145–159

    Google Scholar 

  • Suzuki I, Ohtani E, Kumazawa M (1979) Thermal expansion of γ-Mg2SiO4. J Phys Earth 27:53–61

    Google Scholar 

  • Suzuki I, Ohtani E, Kumazawa M (1980) Thermal expansion of modified spinel, β-Mg2SiO4. J Phys Earth 28:273–280

    Google Scholar 

  • Suzuki A, Ohtani E, Morishima H, Kubo T, Kanbe Y, Kondo T, Okada T, Terasaki H, Kato T, Kikegawa T (2000) In situ determination of the phase boundary between wadsleyite and ringwoodite in Mg2SiO4. Geophys Res Lett 27:803–806

    Article  Google Scholar 

  • Watanabe H (1982) Thermochemical properties of synthetic high-pressure compounds relevant to the earth’s mantle. In: Akimoto S, Manghnani MH (eds) High-pressure research in geophysics. Center for Academic Publications Japan, Tokyo, pp 441–464

    Google Scholar 

  • Weidner DJ, Sawamoto H, Sasaki S, Kumazawa M (1984) Single-crystal elastic properties of the spinel phase of Mg2SiO4. J Geophys Res 89:7852–7860

    Google Scholar 

  • Yagi T, Marumo F, Akimoto S (1974) Crystal structures of spinel polymorphs of Fe2SiO4 and Ni2SiO4. Am Mineral 59:486–490

    Google Scholar 

  • Yong W, Dachs E, Withers AC, Essene EJ (2006) Heat capacity and phase equilibria of hollandite polymorph of KAlSi3O8. Phys Chem Miner 33:167–177

    Article  Google Scholar 

Download references

Acknowledgments

We thank M. Matsui, A. Oganov and T. Tsuchiya for valuable discussion, and H. Nakayama and K. Ishii for infrared spectroscopy. We are grateful to anonymous referees for constructive comments. This work was supported in part by the Grant-in-Aid of the Scientific Research (A) (No. 15204049) of the Japan Society for the Promotion of Science to M. Akaogi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Akaogi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akaogi, M., Takayama, H., Kojitani, H. et al. Low-temperature heat capacities, entropies and enthalpies of Mg2SiO4 polymorphs, and α−β−γ and post-spinel phase relations at high pressure. Phys Chem Minerals 34, 169–183 (2007). https://doi.org/10.1007/s00269-006-0137-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-006-0137-3

Keywords

Navigation