Skip to main content
Log in

Extracellular glutathione fermentation using engineered Saccharomyces cerevisiae expressing a novel glutathione exporter

  • Applied microbial and cell physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

A novel extracellular glutathione fermentation method using engineered Saccharomyces cerevisiae was developed by following three steps. First, a platform host strain lacking the glutathione degradation protein and glutathione uptake protein was constructed. This strain improved the extracellular glutathione productivity by up to 3.2-fold compared to the parental strain. Second, the ATP-dependent permease Adp1 was identified as a novel glutathione export ABC protein (Gxa1) in S. cerevisiae based on the homology of the protein sequence with that of the known human glutathione export ABC protein (ABCG2). Overexpression of this GXA1 gene improved the extracellular glutathione production by up to 2.3-fold compared to the platform host strain. Finally, combinatorial overexpression of the GXA1 gene and the genes involved in glutathione synthesis in the platform host strain increased the extracellular glutathione production by up to 17.1-fold compared to the parental strain. Overall, the metabolic engineering of the glutathione synthesis, degradation, and transport increased the total (extracellular + intracellular) glutathione production. The extracellular glutathione fermentation method developed in this study has the potential to overcome the limitations of the present intracellular glutathione fermentation process in yeast.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alfafara CG, Kanda A, Shioi T, Shimizu H, Shioya S, Suga K (1992) Effect of amino acids on glutathione production by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 36:538–540

    Article  CAS  Google Scholar 

  • Bourbouloux A, Shahi P, Chakladar A, Delrot S, Bachhawat AK (2000) Hgt1p, a high affinity glutathione transporter from the yeast Saccharomyces cerevisiae. J Biol Chem 275:13259–13265

    Article  CAS  Google Scholar 

  • Brechbuhl HM, Gould N, Kachadourian R, Riekhof WR, Voelker DR, Day BJ (2010) Glutathione transport is a unique function of the ATP-binding cassette protein ABCG2. J Biol Chem 285:16582–16587

    Article  CAS  Google Scholar 

  • Chen DC, Yang BC, Kuo TT (1992) One-step transformation of yeast in stationary phase. Curr Genet 21:83–84

    Article  CAS  Google Scholar 

  • Decottignies A, Goffeau A (1997) Complete inventory of the yeast ABC proteins. Nat Genet 15:137–145

    Article  CAS  Google Scholar 

  • Dhaoui M, Auchère F, Blaiseau PL, Lesuisse E, Landoulsi A, Camadro JM, Haguenauer-Tsapis R, Belgareh-Touzé N (2011) Gex1 is a yeast glutathione exchanger that interferes with pH and redox homeostasis. Mol Biol Cell 22:2054–2067

    Article  CAS  Google Scholar 

  • Dröge W, Breitkreutz R (2000) Glutathione and immune function. Proc Nutr Soc 59:595–600

    Article  Google Scholar 

  • Flohé L (1985) The glutathione peroxidase reaction: molecular basis of the antioxidant function of selenium in mammals. Curr Top Cell Regul 27:473–478

    Google Scholar 

  • Hara KY, Shimodate N, Hirokawa Y, Ito M, Baba T, Mori H, Mori H (2009) Glutathione production by efficient ATP-regenerating Escherichia coli mutants. FEMS Microbiol Lett 297:217–224

    Article  CAS  Google Scholar 

  • Hara KY, Kim S, Yoshida H, Kiriyama K, Kondo T, Okai N, Ogino C, Fukuda H, Kondo A (2012a) Development of a glutathione production process from proteinaceous biomass resources using protease-displaying Saccharomyces cerevisiae. Appl Microbiol Biotechnol 93:1495–1502

    Article  CAS  Google Scholar 

  • Hara KY, Kiriyama K, Inagaki A, Nakayama H, Kondo A (2012b) Improvement of glutathione production by metabolic engineering the sulfate assimilation pathway of Saccharomyces cerevisiae. Appl Microbiol Biotechnol (in press)

  • Ishii J, Izawa K, Matsumura S, Wakamura K, Tanino T, Tanaka T, Ogino C, Fukuda H, Kondo A (2009) A simple and immediate method for simultaneously evaluating expression level and plasmid maintenance in yeast. J Biochem 145:701–708

    Article  CAS  Google Scholar 

  • Ito H, Fukuda Y, Murata K, Kimura A (1983) Transformation of intact yeast cells treated with alkali cations. J Bacteriol 153:163–168

    CAS  Google Scholar 

  • Li Y, Wei G, Chen J (2004) Glutathione: a review on biotechnological production. Appl Microbiol Biotechnol 66:233–242

    Article  CAS  Google Scholar 

  • Meister A, Andersen ME (1983) Glutathione. Annu Rev Biochem 52:711–760

    Article  CAS  Google Scholar 

  • Miyake T, Hazu T, Yoshida S, Kanayama M, Tomochika K, Shinoda S, Ono B (1998) Glutathione transport systems of the budding yeast Saccharomyces cerevisiae. Biosci Biotechnol Biochem 62:1858–1864

    Article  Google Scholar 

  • Penninckx MJ (2002) An overview on glutathione in Saccharomyces versus non-conventional yeasts. FEMS Yeast Res 2:295–305

    CAS  Google Scholar 

  • Ray S, Watkins DN, Misso NL, Thompson PJ (2002) Oxidant stress induces gamma-glutamylcysteine synthetase and glutathione synthesis in human bronchial epithelial NCI-H292 cells. Clin Exp Allergy 32:571–577

    Article  CAS  Google Scholar 

  • Rolseth V, Djurhuus R, Svardal AM (2002) Additive toxicity of limonene and 50 % oxygen and the role of glutathione in detoxification in human lung cells. Toxicology 170:75–88

    Article  CAS  Google Scholar 

  • Singh RJ (2002) Glutathione: a marker and antioxidant for aging. J Lab Clin Med 140:380–381

    Article  Google Scholar 

  • Suzuki T, Yokoyama A, Tsuji T, Ikeshima E, Nakashima K, Ikushima S, Kobayashi C, Yoshida S (2011) Identification and characterization of genes involved in glutathione production in yeast. J Biosci Bioeng 112:107–113

    Article  CAS  Google Scholar 

  • Tate S, Meister A (1981) γ-Glutamyltranspeptidase: catalytic, structural and functional aspects. Mol Cell Biochem 39:357–368

    Article  CAS  Google Scholar 

  • Vartanyan LS, Gurevich S, Kozachenko AI, Nagler LG, Lozovskaya EL, Burlakova EB (2000) Changes in superoxide production rate and in superoxide dismutase and glutathione peroxidase activities in subcellular organelles in mouse liver under exposure to low doses of low-intensity radiation. Biochem Mosc 65:442–446

    CAS  Google Scholar 

  • Wei G, Li Y, Du G, Chen J (2003) Effect of surfactants on extracellular accumulation of glutathione by Saccharomyces cerevisiae. Process Biochem 38:1133–1138

    Article  CAS  Google Scholar 

  • Wen S, Zhang T, Tana T (2004) Utilization of amino acids to enhance glutathione production in Saccharomyces cerevisiae. Enz Microbiol Technol 35:501–507

    Article  CAS  Google Scholar 

  • Yoshida H, Hara KY, Kiriyama K, Nakayama H, Okazaki F, Matsuda F, Ogino C, Fukuda H, Kondo A (2011) Enzymatic glutathione production using metabolically engineered Saccharomyces cerevisiae as a whole-cell biocatalyst. Appl Microbiol Biotechnol 91:1001–1006

    Article  CAS  Google Scholar 

  • Yoshida K, Hariki T, Inoue H, Nakamura T (2002) External skin preparation for whitening. JP Patent 2, 002, 284, 664

    Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. J. Ishii (Organization of Advanced Science and Technology, Kobe University) for providing us with the pGK plasmid series. This study was supported by the Special Coordination Funds for Promoting Science and Technology, Creation of Innovation Centers for Advanced Interdisciplinary Research Areas (Innovative Bioproduction Kobe), MEXT, Japan. K.Y. Hara was supported by a Grant-in-Aid for Young Scientists (B) (22760608).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akihiko Kondo.

Additional information

Kentaro Kiriyama and Kiyotaka Y. Hara contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kiriyama, K., Hara, K.Y. & Kondo, A. Extracellular glutathione fermentation using engineered Saccharomyces cerevisiae expressing a novel glutathione exporter. Appl Microbiol Biotechnol 96, 1021–1027 (2012). https://doi.org/10.1007/s00253-012-4075-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4075-3

Keywords

Navigation