Skip to main content
Log in

Biosynthesis, biotechnological production, and application of teicoplanin: current state and perspectives

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The glycopeptide teicoplanin isolated from the fermentation broth of Actinoplanes teichomyceticus is used to treat serious Gram-positive bacterial infections that are resistant to other antibiotics, e.g. β-lactams. The long time frame and progressively broader clinical use of teicoplanin has eventually led to the emergence and spreading of resistance in enterococci and staphylococci towards the antibiotics. Given the structural complexity of the natural product, only fermentative routes are available for bulk production of teicoplanin even though the total synthesis of the antibiotic has been accomplished. Because the low productivity (0.1–3.1 g/L) is a limitation to the commercial production of teicoplanin, substantial effort has been devoted to the strain improvement and process development for enhancing the productivity. This review summarizes the current state of the action mechanism, antibacterial activity, resistance mechanism, biotechnological production, and application of teicoplanin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alekshun MN (2005) New advances in antibiotic development and discovery. Expert Opin Investig Drugs 14:117–134

    Article  PubMed  CAS  Google Scholar 

  • Arthur M, Courvalin P (1993) Genetics and mechanisms of glycopeptide resistance in enterococci. Antimicrob Agents Chemother 37:1563–1571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arthur M, Depardieu F, Reynolds P, Courvalin P (1996a) Quantitative analysis of the metabolism of soluble cytoplasmic peptidoglycan precursors of glycopeptide-resistant enterococci. Mol Microbiol 21:33–44

    Article  CAS  PubMed  Google Scholar 

  • Arthur M, Reynolds P, Courvalin P (1996b) Glycopeptide resistance in enterococci. Trends Microbiol 4:401–407

    Article  CAS  PubMed  Google Scholar 

  • Arthur M, Reynolds PE, Depardieu F, Evers S, Dutka-Malen S, Quintiliani R Jr, Courvalin P (1996c) Mechanisms of glycopeptide resistance in enterococci. J Infect 32:11–16

    Article  CAS  PubMed  Google Scholar 

  • Assi F, Lancini G, Gianantonio A (1986) Method for selectively increasing the ration of single major components of teicoplanin A2 complex. European Patent 0204179A1

  • Baltz RH (2006) Molecular engineering approaches to peptide, polyketide and other antibiotics. Nat Biotechnol 24:1533–1540

    Article  CAS  PubMed  Google Scholar 

  • Barna JCJ, Williams DH, Stone DJM, Leung TWC, Doddrell DM (1984) Structure elucidation of the teicoplanin antibiotics. J Am Chem Soc 106:4895–4902

    Article  CAS  Google Scholar 

  • Beauregard DA, Williams DH, Gwynn MN, Knowles DJ (1995) Dimerization and membrane anchors in extracellular targeting of vancomycin group antibiotics. Antimicrob Agents Chemother 39:781–785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beltrametti F, Lazzarini A, Brunati C, Marazzi A, Jovetic S, Selva E, Marinelli F (2003) Production and characterization of monochlorinated and dechlorinated A40926 derivatives. J Antibiot (Tokyo) 56:773–782

    Article  CAS  Google Scholar 

  • Beltrametti F, Consolandi A, Carrano L, Bagatin F, Rossi R, Leoni L, Zennaro E, Selva E, Marinelli F (2007) Resistance to glycopeptide antibiotics in the teicoplanin producer is mediated by van gene homologue expression directing the synthesis of a modified cell wall peptidoglycan. Antimicrob Agents Chemother 51:1135–1141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bischoff D, Pelzer S, Bister B, Nicholson GJ, Stockert S, Schirle M, Wohlleben W, Jung G, Sussmuth RD (2001) The Biosynthesis of Vancomycin-Type Glycopeptide Antibiotics-The Order of the Cyclization Steps This work was supported by the Deutsche Forschungsgemeinschaft (SFB 323) and by a grant of the EU (MEGATOP, QLK3-1999-00650). R. D. S. gratefully acknowledges the support of a Feodor-Lynen Fellowship granted by the Alexander-von-Humboldt Stiftung. We thank Corina Bihlmaier and Volker Pfeifer for help with transformation and Southern hybridization, J. A. Moss (La Jolla (USA)) for critical comments on the manuscript and Prof. Dr. M. E. Maier and Prof. Dr. H.-P. Fiedler (Tubingen) for generous support. Angew Chem Int Ed Engl 40:4688–4691

    Article  CAS  PubMed  Google Scholar 

  • Bister B, Bischoff D, Nicholson GJ, Stockert S, Wink J, Brunati C, Donadio S, Pelzer S, Wohlleben W, Sussmuth RD (2003) Bromobalhimycin and chlorobromobalhimycins—illuminating the potential of halogenases in glycopeptide antibiotic biosyntheses. Chembiochem 4:658–662

    Article  CAS  PubMed  Google Scholar 

  • Boger DL (2001) Vancomycin, teicoplanin, and ramoplanin: synthetic and mechanistic studies. Med Res Rev 21:356–381

    Article  CAS  PubMed  Google Scholar 

  • Borghi A, Coronelli C, Faniuolo L, Allievi G, Pallanza R, Gallo GG (1984) Teichomycins, new antibiotics from Actinoplanes teichomyceticus nov. sp. IV. Separation and characterization of the components of teichomycin (teicoplanin). J Antibiot (Tokyo) 37:615–620

    Article  CAS  Google Scholar 

  • Borghi A, Antonini P, Zanol M, Ferrari P, Zerilli LF, Lancini GC (1989) Isolation and structure determination of two new analogs of teicoplanin, a glycopeptide antibiotic. J Antibiot (Tokyo) 42:361–366

    Article  CAS  Google Scholar 

  • Borghi A, Edwards D, Zerilli LF, Lancini GC (1991) Factors affecting the normal and branched-chain acyl moieties of teicoplanin components produced by Actinoplanes teichomyceticus. J Gen Microbiol 137:587–592

    Article  CAS  PubMed  Google Scholar 

  • Brunati M, Bava A, Marinelli F, Lancini G (2005) Influence of leucine and valine on ramoplanin production by Actinoplanes sp. ATCC 33076. J Antibiot (Tokyo) 58:473–478

    Article  CAS  Google Scholar 

  • Bugg TD, Wright GD, Dutka-Malen S, Arthur M, Courvalin P, Walsh CT (1991) Molecular basis for vancomycin resistance in Enterococcus faecium BM4147: biosynthesis of a depsipeptide peptidoglycan precursor by vancomycin resistance proteins VanH and VanA. Biochemistry 30:10408–10415

    Article  CAS  PubMed  Google Scholar 

  • Bush K, Macielag M, Weidner-Wells M (2004) Taking inventory: antibacterial agents currently at or beyond Phase 1. Curr Opin Microbiol 7:466–476

    Article  CAS  PubMed  Google Scholar 

  • Campoli-Richards DM, Brogden RN, Faulds D (1990) Teicoplanin. A review of its antibacterial activity, pharmacokinetic properties and therapeutic potential. Drugs 40:449–486

    Article  CAS  PubMed  Google Scholar 

  • Chen DK, Pearce L, McGeer A, Low DE, Willey BM (2000) Evaluation of D-xylose and 1% methyl-alpha-D-glucopyranoside fermentation tests for distinguishing Enterococcus gallinarum from Enterococcus faecium. J Clin Microbiol 38:3652–3655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiu HT, Hubbard BK, Shah AN, Eide J, Fredenburg RA, Walsh CT, Khosla C (2001) Molecular cloning and sequence analysis of the complestatin biosynthetic gene cluster. Proc Natl Acad Sci U S A 98:8548–8553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cometti A, Gallo GG, Kettenring J, Panzone GB, Tuan G, Zerilli LF (1988) Isolation and structure determination of the main related substances of teicoplanin, a glycopeptide antibiotic. Farmaco [Sci] 43:1005–1018

    CAS  Google Scholar 

  • Corti A, Soffientini A, Cassani G (1985) Binding of the glycopeptide antibiotic teicoplanin to D-alanyl-D-alanine-agarose: the effect of micellar aggregates. J Appl Biochem 7:133–137

    CAS  PubMed  Google Scholar 

  • David NW, Joanne LR (1998) Community-based parenteral anti-infective therapy (CoPAT): pharmacokinetic and monitoring issues. Clin Pharmacokinet 35:65–77

    Article  Google Scholar 

  • Dong SD, Oberthur M, Losey HC, Anderson JW, Eggert US, Peczuh MW, Walsh CT, Kahne D (2002) The structural basis for induction of VanB resistance. J Am Chem Soc 124:9064–9065

    Article  CAS  PubMed  Google Scholar 

  • Doull JL, Vining LC (1990) Nutritional control of actinorhodin production by Streptomyces coelicolor A3(2): suppressive effects of nitrogen and phosphate. Appl Microbiol Biotechnol 32:449–454

    Article  CAS  PubMed  Google Scholar 

  • Dudley H, Williams BB (1999) The vancomycin group of antibiotics and the fight against resistant bacteria. Angewandte Chemie International Edition 38:1172–1193

    Article  Google Scholar 

  • Evans DA, Klemer J, Kaattari SL (1998a) Heuristic models of the intermonomeric disulfide bonding process. J Theor Biol 195:505–524

    Article  CAS  PubMed  Google Scholar 

  • Evans DA, Wood MR, Trotter BW, Richardson TI, Barrow JC, Katz JL (1998b) Total syntheses of vancomycin and eremomycin aglycons. Angewandte Chemie International Edition 37:2700–2704

    Article  CAS  PubMed  Google Scholar 

  • Evers S, Quintiliani R Jr, Courvalin P (1996) Genetics of glycopeptide resistance in enterococci. Microb Drug Resist 2:219–223

    Article  CAS  PubMed  Google Scholar 

  • Fines M, Perichon B, Reynolds P, Sahm DF, Courvalin P (1999) VanE, a new type of acquired glycopeptide resistance in Enterococcus faecalis BM4405. Antimicrob Agents Chemother 43:2161–2164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ge M, Chen Z, Onishi HR, Kohler J, Silver LL, Kerns R, Fukuzawa S, Thompson C, Kahne D (1999) Vancomycin derivatives that inhibit peptidoglycan biosynthesis without binding D-Ala-D-Ala. Science 284:507–511

    Article  CAS  PubMed  Google Scholar 

  • Gholizadeh Y, Courvalin P (2000) Acquired and intrinsic glycopeptide resistance in enterococci. Int J Antimicrob Agents 16(Suppl 1):S11–S17

    Article  CAS  PubMed  Google Scholar 

  • Goldstein FW, Coutrot A, Sieffer A, Acar JF (1990) Percentages and distributions of teicoplanin- and vancomycin-resistant strains among coagulase-negative staphylococci. Antimicrob Agents Chemother 34:899–900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gunnarsson N, Bruheim P, Nielsen J (2003) Production of the glycopeptide antibiotic A40926 by Nonomuraea sp. ATCC 39727: influence of medium composition in batch fermentation. J Ind Microbiol Biotechnol 30:150–156

    Article  CAS  PubMed  Google Scholar 

  • Hadatsch B, Butz D, Schmiederer T, Steudle J, Wohlleben W, Sussmuth R, Stegmann E (2007) The biosynthesis of teicoplanin-type glycopeptide antibiotics: assignment of p450 mono-oxygenases to side chain cyclizations of glycopeptide a47934. Chem Biol 14:1078–1089

    Article  CAS  PubMed  Google Scholar 

  • Hancock RE, Farmer SW (1993) Mechanism of uptake of deglucoteicoplanin amide derivatives across outer membranes of Escherichia coli and Pseudomonas aeruginosa. Antimicrob Agents Chemother 37:453–456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harris CM, Kopecka H, Harris TM (1983) Vancomycin: structure and transformation to CDP-I. J Am Chem Soc 105:6915–6922

    Article  CAS  Google Scholar 

  • Heydorn A, Suhr-Jessen T, Nielsen J (1999) Growth and production kinetics of a teicoplanin producing strain of Actinoplanes teichomyceticus. J Antibiot (Tokyo) 52:40–44

    Article  CAS  Google Scholar 

  • Hubbard B, Thomas M, Walsh C (2000) Biosynthesis of L-p-hydroxyphenylglycine, a non-proteinogenic amino acid constituent of peptide antibiotics. Chem Biol 7:931–942

    Article  CAS  PubMed  Google Scholar 

  • Jin ZH, Wang MR, Cen PL (2002) Production of teicoplanin by valine analogue-resistant mutant strains of Actinoplanes teichomyceticus. Appl Microbiol Biotechnol 58:63–66

    Article  CAS  PubMed  Google Scholar 

  • Jung HM, Kim SY, Prabhu P, Moon HJ, Kim IW, Lee JK (2008) Optimization of culture conditions and scale-up to plant scales for teicoplanin production by Actinoplanes teichomyceticus. Appl Microbiol Biotechnol 80:21–27

    Article  CAS  PubMed  Google Scholar 

  • Kahne D, Leimkuhler C, Lu W, Walsh C (2005) Glycopeptide and lipoglycopeptide antibiotics. Chem Rev 105:425–448

    Article  CAS  PubMed  Google Scholar 

  • Kenny MT, Brackman MA, Dulworth JK (1995) In vitro activity of the semisynthetic glycopeptide amide MDL 63, 246. Antimicrob Agents Chemother 39:1589–1590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamb SS, Patel T, Koteva KP, Wright GD (2006) Biosynthesis of sulfated glycopeptide antibiotics by using the sulfotransferase StaL. Chem Biol 13:171–181

    Article  CAS  PubMed  Google Scholar 

  • Lancini GC CB (1990) Glycopeptide antibiotics of the vancomycin group. In Kleinhauf H., Van Dohren H. (Eds), Walter de Gruyter. Berlin, p 159

  • Leclercq R, Derlot E, Duval J, Courvalin P (1988) Plasmid-mediated resistance to vancomycin and teicoplanin in Enterococcus faecium. N Engl J Med 319:157–161

    Article  CAS  PubMed  Google Scholar 

  • Lee JC, Park HR, Park DJ, Son KH, Yoon KH, Kim YB, Kim CJ (2003) Production of teicoplanin by a mutant of Actinoplanes teicomyceticus. Biotechnol Lett 25:537–540

    Article  CAS  PubMed  Google Scholar 

  • Lee JG, Sagui C, Roland C (2005) Quantum simulations of the structure and binding of glycopeptide antibiotic aglycons to cell wall analogues. J Phys Chem B 109:20588–20596

    Article  CAS  PubMed  Google Scholar 

  • Li T, Choroba O, Charles E, Sandercock A, Williams D, Spencer J (2001) Characterisation of a hydroxymandelate oxidase involved in the biosynthesis of two unusual amino acids occurring in the vancomycin group of antibiotics. Chem Commun 18:1752–1753

    Article  Google Scholar 

  • Li TLHF, Haydock SF, Mironenko T, Leadlay PF, Spencer JB (2004) Biosynthetic gene cluster of the glycopeptide antibiotic teicoplanin: characterization of two glycosyltransferase and the key acyltransferase. Chem Biol 11:107–119

    CAS  PubMed  Google Scholar 

  • Losey HC, Peczuh MW, Chen Z, Eggert US, Dong SD, Pelczer I, Kahne D, Walsh CT (2001) Tandem action of glycosyltransferases in the maturation of vancomycin and teicoplanin aglycones: novel glycopeptides. Biochemistry 40:4745–4755

    Article  CAS  PubMed  Google Scholar 

  • Losey HC, Jiang J, Biggins JB, Oberthur M, Ye XY, Dong SD, Kahne D, Thorson JS, Walsh CT (2002) Incorporation of glucose analogs by GtfE and GtfD from the vancomycin biosynthetic pathway to generate variant glycopeptides. Chem Biol 9:1305–1314

    Article  CAS  PubMed  Google Scholar 

  • Mackay JP, Gerhard U, Beauregard DA, Williams DH, Westwell MS, Searle MS (1994) Glycopeptide antibiotic activity and the possible role of dimerization: a model for biological signaling. J Am Chem Soc 116:4581–4590

    Article  CAS  Google Scholar 

  • Malabarba A, Strazzolini P, Depaoli A, Landi M, Berti M, Cavalleri B (1984) Teicoplanin, antibiotics from Actinoplanes teichomyceticus nov. sp. VI. Chemical degradation: physico-chemical and biological properties of acid hydrolysis products. J Antibiot (Tokyo) 37:988–999

    Article  CAS  Google Scholar 

  • Malabarba A, Nicas TI, Thompson RC (1997) Structural modifications of glycopeptide antibiotics. Med Res Rev 17:69–137

    Article  CAS  PubMed  Google Scholar 

  • Marahiel MA, Stachelhaus T, Mootz HD (1997) Modular peptide synthetases involved in nonribosomal peptide synthesis. Chem Rev 97:2651–2674

    Article  CAS  PubMed  Google Scholar 

  • Marshall CG, Wright GD (1997) The glycopeptide antibiotic producer Streptomyces toyocaensis NRRL 15009 has both D-alanyl-D-alanine and D-alanyl-D-lactate ligases. FEMS Microbiol Lett 157:295–299

    Article  CAS  PubMed  Google Scholar 

  • Marshall CG, Wright GD (1998) DdlN from vancomycin-producing Amycolatopsis orientalis C329.2 is a VanA homologue with D-alanyl-D-lactate ligase activity. J Bacteriol 180:5792–5795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marshall CG, Lessard IA, Park I, Wright GD (1998) Glycopeptide antibiotic resistance genes in glycopeptide-producing organisms. Antimicrob Agents Chemother 42:2215–2220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marshall CG, Zolli M, Wright GD (1999) Molecular mechanism of VanHst, an alpha-ketoacid dehydrogenase required for glycopeptide antibiotic resistance from a glycopeptide producing organism. Biochemistry 38:8485–8491

    Article  CAS  PubMed  Google Scholar 

  • McIntyre JJ, Bull AT, Bunch AW (1996) Vancomycin production in batch and continuous culture. Biotechnol Bioeng 49:412–420

    Article  CAS  PubMed  Google Scholar 

  • Mootz HD, Schwarzer D, Marahiel MA (2002) Ways of assembling complex natural products on modular nonribosomal peptide synthetases. Chembiochem 3:490–504

    Article  CAS  PubMed  Google Scholar 

  • Murray BE (2000) Vancomycin-resistant enterococcal infections. N Engl J Med 342:710–721

    Article  CAS  PubMed  Google Scholar 

  • Nicolaou KC, Boddy CN, Brase S, Winssinger N (1999) Chemistry, biology, and medicine of the glycopeptide antibiotics. Angew Chem Int Ed Engl 38:2096–2152

    Article  CAS  PubMed  Google Scholar 

  • Parenti F (1988) Glycopeptide antibiotics. J Clin Pharmacol 28:136–140

    Article  CAS  PubMed  Google Scholar 

  • Parenti F, Beretta G, Berti M, Arioli V (1978) Teichomycins, new antibiotics from Actinoplanes teichomyceticus Nov. Sp. I. Description of the producer strain, fermentation studies and biological properties. J Antibiot (Tokyo) 31:276–283

    Article  CAS  Google Scholar 

  • Parenti F, Schito GC, Courvalin P (2000) Teicoplanin chemistry and microbiology. J Chemother 12(Suppl 5):5–14

    Article  PubMed  Google Scholar 

  • Pelzer S, Dziarnowski A (2006) Sulfation: a new biocombinatorial tool. Chem Biol 13:113–114

    Article  CAS  PubMed  Google Scholar 

  • Pelzer S, Sussmuth R, Heckmann D, Recktenwald J, Huber P, Jung G, Wohlleben W (1999) Identification and analysis of the balhimycin biosynthetic gene cluster and its use for manipulating glycopeptide biosynthesis in Amycolatopsis mediterranei DSM5908. Antimicrob Agents Chemother 43:1565–1573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peters G, Pulverer G (1983) Antibacterial activity of teichomycin, a new glycopeptide antibiotic, in comparison to vancomycin. J Antimicrob Chemother 11:94–95

    Article  CAS  PubMed  Google Scholar 

  • Pfeifer V, Nicholson G, Ries J, Recktenwald J, Schefer A, Shawky R, Schröder J, Wohlleben W, Pelzer S (2001) A polyketide synthase in glycopeptide biosynthesis: the biosynthesis of the non-proteinogenic amino acid (S)-3, 5-dihydroxyphenylglycine. J Biol Chem 276:38370–38377

    Article  CAS  PubMed  Google Scholar 

  • Pootoolal J, Neu J, Wright GD (2002a) Glycopeptide antibiotic resistance. Annu Rev Pharmacol Toxicol 42:381–408

    Article  CAS  PubMed  Google Scholar 

  • Pootoolal J, Thomas MG, Marshall CG, Neu JM, Hubbard BK, Walsh CT, Wright GD (2002b) Assembling the glycopeptide antibiotic scaffold: the biosynthesis of A47934 from Streptomyces toyocaensis NRRL15009. Proc Natl Acad Sci U S A 99:8962–8967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Puk O, Huber P, Bischoff D, Recktenwald J, Jung G, Sussmuth RD, van Pee KH, Wohlleben W, Pelzer S (2002) Glycopeptide biosynthesis in Amycolatopsis mediterranei DSM5908: function of a halogenase and a haloperoxidase/perhydrolase. Chem Biol 9:225–235

    Article  CAS  PubMed  Google Scholar 

  • Recktenwald J, Shawky R, Puk O, Pfennig F, Keller U, Wohlleben W, Pelzer S (2002) Nonribosomal biosynthesis of vancomycin-type antibiotics: a heptapeptide backbone and eight peptide synthetase modules. Microbiology 148:1105–1108

    Article  CAS  PubMed  Google Scholar 

  • Reynolds PE (1989) Structure, biochemistry and mechanism of action of glycopeptide antibiotics. Eur J Clin Microbiol Infect Dis 8:943–950

    Article  CAS  PubMed  Google Scholar 

  • Reynolds PE, Courvalin P (2005) Vancomycin resistance in enterococci due to synthesis of precursors terminating in D-alanyl-D-serine. Antimicrob Agents Chemother 49:21–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez MJ, Snyder NJ, Zweifel MJ, Wilkie SC, Stack DR, Cooper RD, Nicas TI, Mullen DL, Butler TF, Thompson RC (1998) Novel glycopeptide antibiotics: N-alkylated derivatives active against vancomycin-resistant enterococci. J Antibiot (Tokyo) 51:560–569

    Article  CAS  Google Scholar 

  • Rolston KV, Nguyen H, Messer M (1990) In vitro activity of LY264826, a new glycopeptide antibiotic, against gram-positive bacteria isolated from patients with cancer. Antimicrob Agents Chemother 34:2137–2141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schafer M, Schneider TR, Sheldrick GM (1996) Crystal structure of vancomycin. Structure 4:1509–1515

    Article  CAS  PubMed  Google Scholar 

  • Serina S, Radice F, Maffioli S, Donadio S, Sosio M (2004) Glycopeptide resistance determinants from the teicoplanin producer Actinoplanes teichomyceticus. FEMS Microbiol Lett 240:69–74

    Article  CAS  PubMed  Google Scholar 

  • Sheldrick GM, Jones PG, Kennard O, Williams DH, Smith GA (1978) Structure of vancomycin and its complex with acetyl-D-alanyl-D-alanine. Nature 271:223–225

    Article  CAS  PubMed  Google Scholar 

  • Solenberg PJ, Matsushima P, Stack DR, Wilkie SC, Thompson RC, Baltz RH (1997) Production of hybrid glycopeptide antibiotics in vitro and in Streptomyces toyocaensis. Chem Biol 4:195–202

    Article  CAS  PubMed  Google Scholar 

  • Somma S, Gastaldo L, Corti A (1984) Teicoplanin, a new antibiotic from Actinoplanes teichomyceticus nov. sp. Antimicrob Agents Chemother 26:917–923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song JM, Park JT, Lee HS, Kang JH, Kang DJ (2008) Production of teicoplanin from Actinoplanes teichomyceticus ID9303 by adding proline. Biosci Biotechnol Biochem 72:1635–1637

    Article  CAS  PubMed  Google Scholar 

  • Sosio M, Donadio S (2006) Understanding and manipulating glycopeptide pathways: the example of the dalbavancin precursor A40926. J Ind Microbiol Biotechnol 33:569–576

    Article  CAS  PubMed  Google Scholar 

  • Sosio M, Bianchi A, Bossi E, Donadio S (2000) Teicoplanin biosynthesis genes in Actinoplanes teichomyceticus. Antonie Van Leeuwenhoek 78:379–384

    Article  CAS  PubMed  Google Scholar 

  • Sosio M, Stinchi S, Beltrametti F, Lazzarini A, Donadio S (2003) The gene cluster for the biosynthesis of the glycopeptide antibiotic A40926 by nonomuraea species. Chem Biol 10:541–549

    Article  CAS  PubMed  Google Scholar 

  • Sosio M, Kloosterman H, Bianchi A, de Vreugd P, Dijkhuizen L, Donadio S (2004) Organization of the teicoplanin gene cluster in Actinoplanes teichomyceticus. Microbiology 150:95–102

    Article  CAS  PubMed  Google Scholar 

  • Spencer RC, Goering R (1995) A critical review of the in-vitro activity of teicoplanin. Int J Antimicrob Agents 5:169–177

    Article  CAS  PubMed  Google Scholar 

  • Thorson JS, Barton WA, Hoffmeister D, Albermann C, Nikolov DB (2004) Structure-based enzyme engineering and its impact on in vitro glycorandomization. Chembiochem 5:16–25

    Article  CAS  PubMed  Google Scholar 

  • Truman AW, Robinson L, Spencer JB (2006) Identification of a deacetylase involved in the maturation of teicoplanin. Chem biochem 7:1670–1675

    CAS  Google Scholar 

  • Uttley AH, Collins CH, Naidoo J, George RC (1988) Vancomycin-resistant enterococci. Lancet 1:57–58

    Article  CAS  PubMed  Google Scholar 

  • van Wageningen AM, Kirkpatrick PN, Williams DH, Harris BR, Kershaw JK, Lennard NJ, Jones M, Jones SJ, Solenberg PJ (1998) Sequencing and analysis of genes involved in the biosynthesis of a vancomycin group antibiotic. Chem Biol 5:155–162

    Article  PubMed  Google Scholar 

  • Vara AG, Hochkoepple A, Nielsen J, Villadsen J (2002) Production of teicoplanin by Actinoplanes teichomyceticus in continuous fermentation. Biotechnol Bioeng 77:589–598

    Article  CAS  PubMed  Google Scholar 

  • Walsh C (2003) Antibiotics: actions, origins, resistance . ASM, Washington, DC, p 340

    Book  Google Scholar 

  • Walsh CT, Fisher SL, Park IS, Prahalad M, Wu Z (1996) Bacterial resistance to vancomycin: five genes and one missing hydrogen bond tell the story. Chem Biol 3:21–28

    Article  CAS  PubMed  Google Scholar 

  • Walsh C, Freel Meyers CL, Losey HC (2003) Antibiotic glycosyltransferases: antibiotic maturation and prospects for reprogramming. J Med Chem 46:3425–3436

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Ding H, Hu Y (1996) The action of arginine and valine in the biosynthesis of teicoplanin. Chin J Antibiot 21(Suppl):77–80

    CAS  Google Scholar 

  • Weist S, Bister B, Puk O, Bischoff D, Pelzer S, Nicholson GJ, Wohlleben W, Jung G, Sussmuth RD (2002) Fluorobalhimycin—a new chapter in glycopeptide antibiotic research. Angew Chem Int Ed Engl 41:3383–3385

    Article  CAS  PubMed  Google Scholar 

  • Weist S, Kittel C, Bischoff D, Bister B, Pfeifer V, Nicholson GJ, Wohlleben W, Sussmuth RD (2004) Mutasynthesis of glycopeptide antibiotics: variations of vancomycin's AB-ring amino acid 3, 5-dihydroxyphenylglycine. J Am Chem Soc 126:5942–5943

    Article  CAS  PubMed  Google Scholar 

  • Wenzel RP (2004) The antibiotic pipeline—challenges, costs, and values. N Engl J Med 351:523–526

    Article  CAS  PubMed  Google Scholar 

  • Wikipedia TFE (2009) Dalbavancin. In category: Drugs not assigned an ATC code. Wikimedia Foundation Inc. Available via DIALOG. <http://en.wikipedia.org/wiki/Dalbavancin>. Accessed 2 June 2009

  • Williams DH, Maguire AJ, Tsuzuki W, Westwell MS (1998) An analysis of the origins of a cooperative binding energy of dimerization. Science 280:711–714

    Article  CAS  PubMed  Google Scholar 

  • Williamson MP, Williams DH (1981) Structure revision of the antibiotic vancomycin. Use of nuclear Overhauser effect difference spectroscopy. J Am Chem Soc 103:6580–6585

    Article  CAS  Google Scholar 

  • Wilson AP, Gruneberg RN (1994) Use of teicoplanin in community medicine. Eur J Clin Microbiol Infect Dis 13:701–710

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the 21C Frontier Microbial Genomics and Applications Center Program, Ministry of Education, Science & Technology, Republic of Korea. This research was also supported by the 2008 KU Brain Pool of Konkuk University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jung-Kul Lee.

Additional information

Hyung-Moo Jung and Marimuthu Jeya equally contributed to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jung, HM., Jeya, M., Kim, SY. et al. Biosynthesis, biotechnological production, and application of teicoplanin: current state and perspectives. Appl Microbiol Biotechnol 84, 417–428 (2009). https://doi.org/10.1007/s00253-009-2107-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-009-2107-4

Keywords

Navigation