Skip to main content
Log in

Solvent-tolerant bacteria for biotransformations in two-phase fermentation systems

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Product removal from aqueous media poses a challenge in biotechnological whole-cell biotransformation processes in which substrates and/or products may have toxic effects. The assignment of an additional liquid solvent phase provides a solution, as it facilitates in situ product recovery from aqueous media. In such two-phase systems, toxic substrates and products are present in the aqueous phase in tolerable but still bioavailable amounts. As a matter of course, adequate organic solvents have to possess hydrophobicity properties akin to substrates and products of interest, which in turn involves intrinsic toxicity of the solvents used. The employment of bacteria being able to adapt to otherwise toxic solvents helps to overcome the problem. Adaptive mechanisms enabling such solvent tolerant bacteria to survive and grow in the presence of toxic solvents generally involve either modification of the membrane and cell surface properties, changes in the overall energy status, or the activation and/or induction of active transport systems for extruding solvents from membranes into the environment. It is anticipated that the biotechnological production of a number of important fine chemicals in amounts sufficient to compete economically with chemical syntheses will soon be possible by making use of solvent-tolerant microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahmad S, Johri BN (1993) Microbial transformation of sterols in organic media. Indian J Chem Sect B 32:67–69

    Google Scholar 

  • Aono R, Doukyu N, Kobayashi H, Nakajima H, Horikoshi K (1994) Oxidative bioconversion of cholesterol by Pseudomonas sp. strain-ST-200 in a water-organic solvent 2-phase system. Appl Environ Microbiol 60:2518–2523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aono R, Tsukagoshi N, Miyamoto T (2001) Evaluation of the growth inhibition strength of hydrocarbon solvents against Escherichia coli and Pseudomonas putida grown in a two-liquid phase culture system consisting of a medium and organic solvent. Extremophiles 5:11–15

    Article  CAS  PubMed  Google Scholar 

  • Brink LES, Tramper J (1985) Optimization of organic-solvent in multiphase biocatalysis. Biotechnol Bioeng 27:1258–1269

    Article  CAS  PubMed  Google Scholar 

  • Bruce LJ, Daugulis AJ (1991) Solvent selection strategies for extractive biocatalysis. Biotechnol Prog 7:116–124

    Article  CAS  PubMed  Google Scholar 

  • Chen Q, Nijenhuis A, Preusting H, Dolfing J, Janssen DB, Witholt B (1995) Effects of octane on the fatty acid composition and transition temperature of Pseudomonas oleovorans membrane lipids during growth in 2-liquid-phase continuous cultures. Enzyme Microb Technol 17:647–652

    Article  CAS  Google Scholar 

  • Cruden DL, Wolfram JH, Rogers RD, Gibson DT (1992) Physiological properties of a Pseudomonas strain which grows with p-xylene in a two-phase (organic–aqueous) medium. Appl Environ Microbiol 58:2723–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cruz A, Fernandes P, Cabral JMS, Pinheiro HM (2004) Solvent partitioning and whole-cell sitosterol bioconversion activity in aqueous–organic two-phase systems. Enzyme Microb Technol 34:342–353

    Article  CAS  Google Scholar 

  • Daugulis AJ (1997) Partitioning bioreactors. Curr Opin Biotechnol 8:169–174

    Article  CAS  PubMed  Google Scholar 

  • de Bont JAM (1998) Solvent-tolerant bacteria in biocatalysis. Trends Biotechnol 16:493–499

    Article  Google Scholar 

  • Diefenbach R, Heipieper HJ, Keweloh H (1992) The conversion of cis- into trans- unsaturated fatty acids in Pseudomonas putida P8: evidence for a role in the regulation of membrane fluidity. Appl Environ Microbiol 38:382–387

    CAS  Google Scholar 

  • Doukyu N, Nakano T, Okuyama Y, Aono R (2002) Isolation of an Acinetobacter sp. ST-550 which produces a high level of indigo in a water–organic solvent two-phase system containing high levels of indole. Appl Microbiol Biotechnol 58:543–546

    Article  CAS  PubMed  Google Scholar 

  • Favre-Bulle O, Weenink E, Vos T, Preusting H, Witholt B (1993) Continuous bioconversion of N-octane to octanoic-acid by recombinant Escherichia-coli (Alk+) growing in a 2-liquid-phase chemostat. Biotechnol Bioeng 41:263–272

    Article  CAS  PubMed  Google Scholar 

  • Fredrickson JK, Balkwill DL, Drake GR, Romine MF, Ringelberg DB, White DC (1995) Aromatic-degrading Sphingomonas isolates from the deep subsurface. Appl Environ Microbiol 61:1917–1922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heipieper HJ, Diefenbach R, Keweloh H (1992) Conversion of cis unsaturated fatty acids to trans, a possible mechanism for the protection of phenol-degrading Pseudomonas putida P8 from substrate toxicity. Appl Environ Microbiol 58:1847–1852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heipieper HJ, Weber FJ, Sikkema J, Keweloh H, de Bont JAM (1994) Mechanisms behind resistance of whole cells to toxic organic solvents. Trends Biotechnol 12:409–415

    Article  CAS  Google Scholar 

  • Heipieper HJ, Meulenbeld G, van Oirschot Q, de Bont JAM (1996) Effect of environmental factors on the trans/cis ratio of unsaturated fatty acids in Pseudomonas putida S12. Appl Environ Microbiol 62:2773–2777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heipieper HJ, Meinhardt F, Segura A (2003) The cistrans isomerase of unsaturated fatty acids in Pseudomonas and Vibrio: biochemistry, molecular biology and physiological function of a unique stress adaptive mechanism. FEMS Microbiol Lett 229:1–7

    Article  CAS  PubMed  Google Scholar 

  • Holtwick R, Meinhardt F, Keweloh H (1997) Cistrans isomerization of unsaturated fatty acids: cloning and sequencing of the cti gene from Pseudomonas putida P8. Appl Environ Microbiol 63:4292–4297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holtwick R, Keweloh H, Meinhardt F (1999) Cis/trans isomerase of unsaturated fatty acids of Pseudomonas putida P8: evidence for a heme protein of the cytochrome c type. Appl Environ Microbiol 65:2644–2649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Husken LE, Oomes M, Schroen K, Tramper J, de Bont JAM, Beeftink R (2002) Membrane-facilitated bioproduction of 3-methylcatechol in an octanol/water two-phase system. J Biotechnol 96:281–289

    Article  CAS  PubMed  Google Scholar 

  • Husken LE, Hoogakker J, de Bont JAM, Tramper J, Beeftink HH (2003) Model description of bacterial 3-methylcatechol production in one- and two-phase systems. Bioprocess Biosyst Eng 26:11–17

    Article  CAS  PubMed  Google Scholar 

  • Ingram LO (1976) Adaptation of membrane lipids to alcohols. J Bacteriol 125:670–678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ingram LO (1977) Changes in lipid composition of Escherichia coli resulting from growth with organic solvents and with food additives. Appl Environ Microbiol 33:1233–1236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ingram LO, Buttke TM (1984) Effects of alcohols on micro-organisms. Adv Microb Physiol 25:253–300

    Article  CAS  PubMed  Google Scholar 

  • Inoue A, Horikoshi K (1989) A Pseudomonas thrives in high concentrations of toluene. Nature 338:264–266

    Article  CAS  Google Scholar 

  • Isken S, de Bont JAM (1996) Active efflux of toluene in a solvent-resistant bacterium. J Bacteriol 178:6056–6058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Isken S, de Bont JAM (1998) Bacteria tolerant to organic solvents. Extremophiles 2:229–238

    Article  CAS  PubMed  Google Scholar 

  • Isken S, Heipieper HJ (2002) Toxicity of organic solvents to microoganisms. In: Bitton G (ed) Encyclopedia of environmental microbiology. Wiley, New York, pp 3147–3155

    Google Scholar 

  • Kabelitz N, Santos PM, Heipieper HJ (2003) Effect of aliphatic alcohols on growth and degree of saturation of membrane lipids in Acinetobacter calcoaceticus. FEMS Microbiol Lett 220:223–227

    Article  CAS  PubMed  Google Scholar 

  • Kato C, Inoue A, Horikoshi K (1996) Isolating and characterizing deep-sea marine microorganisms. Trends Biotechnol 14:6–12

    Article  CAS  PubMed  Google Scholar 

  • Kellerhals MB, Hazenberg W, Witholt B (1999) High cell density fermentations of Pseudomonas oleovorans for the production of mcl-PHAs in two-liquid phase media. Enzyme Microb Technol 24:111–116

    Article  CAS  Google Scholar 

  • Keweloh H, Weyrauch G, Rehm HJ (1990) Phenol-induced membrane changes in free and immobilized Escherichia coli. Appl Microbiol Biotechnol 33:66–71

    Article  CAS  PubMed  Google Scholar 

  • Kim K, Lee SJ, Lee KH, Lim DB (1998) Isolation and characterization of toluene-sensitive mutants from the toluene-resistant bacterium Pseudomonas putida GM73. J Bacteriol 180:3692–3696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiran MD, Annapoorni S, Suzuki I, Murata N, Shivaji S (2005) Cistrans isomerase gene in psychrophilic Pseudomonas syringae is constitutively expressed during growth and under conditions of temperature and solvent stress. Extremophiles 9:117–125

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi H, Uematsu K, Hirayama H, Horikoshi K (2000) Novel toluene elimination system in a toluene-tolerant microorganism. J Bacteriol 182:6451–6455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laane C, Boeren S, Vos K (1985) On optimizing organic solvents in multi-liquid-phase biocatalysis. Trends Biotechnol 3:251–252

    Article  CAS  Google Scholar 

  • Leo AJ (1993) Calculating log P (oct) from structures. Chem Rev 93:1281–1306

    Article  CAS  Google Scholar 

  • Leon R, Fernandes P, Pinheiro HM, Cabral JMS (1998) Whole-cell biocatalysis in organic media. Enzyme Microb Technol 23:483–500

    Article  CAS  Google Scholar 

  • Liu WH, Horng WC, Tsai MS (1996) Bioconversion of cholesterol to cholest-4-en-3-one in aqueous organic solvent two-phase reactors. Enzyme Microb Technol 18:184–189

    Article  CAS  Google Scholar 

  • Makin SA, Beveridge TJ (1996) The influence of A-band and B-band lipopolysaccharide on the surface characteristics and adhesion of Pseudomonas aeruginosa to surfaces. Microbiology 142:299–307

    Article  CAS  PubMed  Google Scholar 

  • Malinowski JJ (2001) Two-phase partitioning bioreactors in fermentation technology. Biotechnol Adv 19:525–538

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto M, De Bont JAM, Isken S (2002) Isolation and characterization of the solvent-tolerant Bacillus cereus strain R1. J Biosci Bioeng 94:45–51

    Article  CAS  PubMed  Google Scholar 

  • Meyer D, Witholt B, Schmid A (2005) Suitability of recombinant Escherichia coli and Pseudomonas putida strains for selective biotransformation of m-nitrotoluene by xylene monooxygenase. Appl Environ Microbiol 71:6624–6632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer D, Buehler B, Schmid A (2006) Process and catalyst design objectives for specific redox biocatalysis. Adv Appl Microbiol 59:53–91

    Article  CAS  PubMed  Google Scholar 

  • Na KS, Kuroda A, Takiguchi N, Ikeda T, Ohtake H, Kato J (2005) Isolation and characterization of benzene-tolerant Rhodococcus opacus strains. J Biosci Bioeng 99:378–382

    Article  CAS  PubMed  Google Scholar 

  • Neumann G, Kabelitz N, Zehnsdorf A, Miltner A, Lippold H, Meyer D, Schmid A, Heipieper HJ (2005a) Prediction of the adaptability of Pseudomonas putida DOT-T1E to a second phase of a solvent for economically sound two-phase biotransformations. Appl Environ Microbiol 71:6606–6612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neumann G, Veeranagouda Y, Karegoudar TB, Sahin O, Mausezahl I, Kabelitz N, Kappelmeyer U, Heipieper HJ (2005b) Cells of Pseudomonas putida and Enterobacter sp. adapt to toxic organic compounds by increasing their size. Extremophiles 9:163–168

    Article  CAS  PubMed  Google Scholar 

  • Neumann G, Cornelissen S, van Breukelen F, Hunger S, Lippold H, Loffhagen N, Wick LY, Heipieper HJ (2006) Energetics and surface properties of Pseudomonas putida DOT-T1E in a two-phase fermentation system with 1-decanol as second phase. Appl Environ Microbiol 72:4232–4238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nikolova P, Ward OP (1993) Whole-cell biocatalysis in nonconventional media. J Ind Microbiol 12:76–86

    Article  CAS  PubMed  Google Scholar 

  • Ogino H, Yasui K, Shiotani T, Ishihara T, Ishikawa H (1995) Organic solvent-tolerant bacterium which secretes an organic solvent-stable proteolytic enzyme. Appl Environ Microbiol 61:4258–4262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osborne SJ, Leaver J, Turner MK, Dunnill P (1990) Correlation of biocatalytic activity in an organic–aqueous two-liquid phase system with solvent concentration in the cell membrane. Enzyme Microb Technol 12:281–291

    Article  CAS  PubMed  Google Scholar 

  • Paje MLF, Neilan BA, Couperwhite I (1997) A Rhodococcus species that thrives on medium saturated with liquid benzene. Microbiology 143:2975–2981

    Article  CAS  PubMed  Google Scholar 

  • Panke S, Meyer A, Huber CM, Witholt B, Wubbolts MG (1999) An alkane-responsive expression system for the production of fine chemicals. Appl Environ Microbiol 65:2324–2332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panke S, Held M, Wubbolts MG, Witholt B, Schmid A (2002) Pilot-scale production of (S)-styrene oxide from styrene by recombinant Escherichia coli synthesizing styrene monooxygenase. Biotechnol Bioeng 80:33–41

    Article  CAS  PubMed  Google Scholar 

  • Pinkart HC, White DC (1997) Phospholipid biosynthesis and solvent tolerance in Pseudomonas putida strains. J Bacteriol 179:4219–4226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pinkart HC, Wolfram JW, Rogers R, White DC (1996) Cell envelope changes in solvent-tolerant and solvent-sensitive Pseudomonas putida strains following exposure to o-xylene. Appl Environ Microbiol 62:1129–1132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramos JL, Duque E, Huertas MJ, Haidour A (1995) Isolation and expansion of the catabolic potential of a Pseudomonas putida strain able to grow in the presence of high concentrations of aromatic hydrocarbons. J Bacteriol 177:3911–3916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramos JL, Gallegos MT, Marques S, Ramos-Gonzalez MI, Espinosa-Urgel M, Segura A (2001) Responses of Gram-negative bacteria to certain environmental stressors. Curr Opin Microbiol 4:166–171

    Article  CAS  PubMed  Google Scholar 

  • Ramos JL, Duque E, Gallegos MT, Godoy P, Ramos-Gonzalez MI, Rojas A, Teran W, Segura A (2002) Mechanisms of solvent tolerance in Gram-negative bacteria. Annu Rev Microbiol 56:743–768

    Article  CAS  PubMed  Google Scholar 

  • Rekker RF, Kort HMD (1979) Hydrophobic fragmental constant—extension to a 1000 data point set. Eur J Med Chem 14:479–488

    CAS  Google Scholar 

  • Reva ON, Weinel C, Weinel M, Bohm K, Stjepandic D, Hoheisel JD, Tummler B (2006) Functional genomics of stress response in Pseudomonas putida KT2440. J Bacteriol 188:4079–4092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rojas A, Duque E, Schmid A, Hurtado A, Ramos JL, Segura A (2004) Biotransformation in double-phase systems: physiological responses of Pseudomonas putida DOT-T1E to a double phase made of aliphatic alcohols and biosynthesis of substituted catechols. Appl Environ Microbiol 70:3637–3643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salter GJ, Kell DB (1995) Solvent selection for whole cell biotransformations in organic media. Crit Rev Biotechnol 15:139–177

    Article  CAS  PubMed  Google Scholar 

  • Santos PM, Benndorf D, Sa-Correia I (2004) Insights into Pseudomonas putida KT2440 response to phenol-induced stress by quantitative proteomics. Proteomics 4:2640–2652

    Article  CAS  PubMed  Google Scholar 

  • Sardessai Y, Bhosle S (2002) Tolerance of bacteria to organic solvents. Res Microbiol 153:263–268

    Article  CAS  PubMed  Google Scholar 

  • Sardessai YN, Bhosle S (2004) Industrial potential of organic solvent tolerant bacteria. Biotechnol Prog 20:655–660

    Article  CAS  PubMed  Google Scholar 

  • Schmid A, Dordick JS, Hauer B, Kiener A, Wubbolts M, Witholt B (2001) Industrial biocatalysis today and tomorrow. Nature 409:258–268

    Article  CAS  PubMed  Google Scholar 

  • Schmid A, Hollmann F, Park JB, Buhler B (2002) The use of enzymes in the chemical industry in Europe. Curr Opin Biotechnol 13:359–366

    Article  CAS  PubMed  Google Scholar 

  • Schoemaker HE, Mink D, Wubbolts MG (2003) Dispelling the myths—biocatalysis in industrial synthesis. Science 299:1694–1697

    Article  CAS  PubMed  Google Scholar 

  • Segura A, Duque E, Mosqueda G, Ramos JL, Junker F (1999) Multiple responses of Gram-negative bacteria to organic solvents. Environ Microbiol 1:191–198

    Article  CAS  PubMed  Google Scholar 

  • Segura A, Godoy P, van Dillewijn P, Hurtado A, Arroyo N, Santacruz S, Ramos JL (2005) Proteomic analysis reveals the participation of energy- and stress-related proteins in the response of Pseudomonas putida DOT-T1E to toluene. J Bacteriol 187:5937–5945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shima H, Kudo T, Horikoshi K (1991) Isolation of toluene-resistant mutants from Pseudomonas putida Ppg1 (ATCC 17453). Agric Biol Chem 55:1197–1199

    CAS  Google Scholar 

  • Sikkema J, de Bont JA, Poolman B (1995) Mechanisms of membrane toxicity of hydrocarbons. Microbiol Rev 59:201–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sinensky M (1974) Homeoviscous adaptation—a homeostatic process that regulates the viscosity of membrane lipids in Escherichia coli. Proc Natl Acad Sci USA 71:522–525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Sonsbeek HM, Beeftink HH, Tramper J (1993) Two-liquid-phase bioreactors. Enzyme Microb Technol 15:722–729

    Article  PubMed  Google Scholar 

  • Veeranagouda Y, Karegoudar TB, Neumann G, Heipieper HJ (2006) Enterobacter sp. VKGH12 growing with n-butanol as the sole carbon source and cells to which the alcohol is added as pure toxin show considerable differences in their adaptive responses. FEMS Microbiol Lett 254:48–54

    Article  CAS  PubMed  Google Scholar 

  • Volkers RJM, de Jong AL, Hulst AG, van Baar BLM, de Bont JAM, Wery J (2006) Chemostat-based proteomic analysis of toluene-affected Pseudomonas putida S12. Environ Microbiol 8:1674–1679

    Article  CAS  PubMed  Google Scholar 

  • von Wallbrunn A, Heipieper HJ, Meinhardt F (2002) Cis/trans isomerisation of unsaturated fatty acids in a cardiolipin synthase knock-out mutant of Pseudomonas putida P8. Appl Microbiol Biotechnol 60:179–185

    Article  CAS  Google Scholar 

  • von Wallbrunn A, Richnow HH, Neumann G, Meinhardt F, Heipieper HJ (2003) Mechanism of cistrans isomerization of unsaturated fatty acids in Pseudomonas putida. J Bacteriol 185:1730–1733

    Article  CAS  Google Scholar 

  • Vrionis HA, Kropinski AM, Daugulis AJ (2002) Enhancement of a two-phase partitioning bioreactor system by modification of the microbial catalyst: demonstration of concept. Biotechnol Bioeng 79:587–594

    Article  CAS  PubMed  Google Scholar 

  • Weber FJ, de Bont JAM (1996) Adaptation mechanisms of microorganisms to the toxic effects of organic solvents on membranes. Biochim Biophys Acta 1286:225–245

    Article  CAS  PubMed  Google Scholar 

  • Wery J, de Bont JAM (2004) Solvent-tolerance of pseudomonads: a new degree of freedom in biocatalysis. In: Ramos JL (ed) Pseudomonas, vol 3: biosynthesis of macromolecules and molecular metabolism. Kluwer, Dordrecht, pp 609–634

    Chapter  Google Scholar 

  • Wery J, da Silva DIM, de Bont JAM (2000) A genetically modified solvent-tolerant bacterium for optimized production of a toxic fine chemical. Appl Microbiol Biotechnol 54:180–185

    Article  CAS  PubMed  Google Scholar 

  • Wick LY, de Munain AR, Springael D, Harms H (2002) Responses of Mycobacterium sp. LB501T to the low bioavailability of solid anthracene. Appl Microbiol Biotechnol 58:378–385

    Article  CAS  PubMed  Google Scholar 

  • Wierckx NJP, Ballerstedt H, de Bont JAM, Wery J (2005) Engineering of solvent-tolerant Pseudomonas putida S12 for bioproduction of phenol from glucose. Appl Environ Microbiol 71:8221–8227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Witholt B, Desmet MJ, Kingma J, Vanbeilen JB, Kok M, Lageveen RG, Eggink G (1990) Bioconversions of aliphatic compounds by Pseudomonas oleovorans in multiphase bioreactors—background and economic potential. Trends Biotechnol 8:46–52

    Article  CAS  PubMed  Google Scholar 

  • Wubbolts MG, FavreBulle O, Witholt B (1996) Biosynthesis of synthons in two-liquid-phase media. Biotechnol Bioeng 52:301–308

    Article  CAS  PubMed  Google Scholar 

  • Zahir Z, Seed KD, Dennis JJ (2006) Isolation and characterization of novel organic solvent-tolerant bacteria. Extremophiles 10:129–138

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was partially supported by Contract No. QLRT-2001-00435 of the European Commission within its Fifth Framework Programme. We thank Daniel Meyer for a critical discussion of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hermann J. Heipieper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heipieper, H.J., Neumann, G., Cornelissen, S. et al. Solvent-tolerant bacteria for biotransformations in two-phase fermentation systems. Appl Microbiol Biotechnol 74, 961–973 (2007). https://doi.org/10.1007/s00253-006-0833-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-006-0833-4

Keywords

Navigation