Skip to main content

Advertisement

Log in

Ion channel clustering enhances weak electric field detection by neutrophils: apparent roles of SKF96365-sensitive cation channels and myeloperoxidase trafficking in cellular responses

  • Article
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

We have tested Galvanovskis and Sandblom’s prediction that ion channel clustering enhances weak electric field detection by cells as well as how the elicited signals couple to metabolic alterations. Electric field application was timed to coincide with certain known intracellular chemical oscillators (phase-matched conditions). Polarized, but not spherical, neutrophils labeled with anti-Kv1.3, FL-DHP, and anti-TRP1, but not anti-T-type Ca2+ channels, displayed clusters at the lamellipodium. Resonance energy transfer experiments showed that these channel pairs were in close proximity. Dose-field sensitivity studies of channel blockers suggested that K+ and Ca2+ channels participate in field detection, as judged by enhanced oscillatory NAD(P)H amplitudes. Further studies suggested that K+ channel blockers act by reducing the neutrophil’s membrane potential. Mibefradil and SKF93635, which block T-type Ca2+ channels and SOCs, respectively, affected field detection at appropriate doses. Microfluorometry and high-speed imaging of indo-1-labeled neutrophils was used to examine Ca2+ signaling. Electric fields enhanced Ca2+ spike amplitude and triggered formation of a second traveling Ca2+ wave. Mibefradil blocked Ca2+ spikes and waves. Although 10 μM SKF96365 mimicked mibefradil, 7 μM SKF96365 specifically inhibited electric field-induced Ca2+ signals, suggesting that one SKF96365-senstive site is influenced by electric fields. Although cells remained morphologically polarized, ion channel clusters at the lamellipodium and electric field sensitivity were inhibited by methyl-β-cyclodextrin. As a result of phase-matched electric field application in the presence of ion channel clusters, myeloperoxidase (MPO) was found to traffic to the cell surface. As MPO participates in high amplitude metabolic oscillations, this suggests a link between the signaling apparatus and metabolic changes. Furthermore, electric field effects could be blocked by MPO inhibition or removal while certain electric field effects were mimicked by the addition of MPO to untreated cells. Therefore, channel clustering plays an important role in electric field detection and downstream responses of morphologically polarized neutrophils. In addition to providing new mechanistic insights concerning electric field interactions with cells, our work suggests novel methods to remotely manipulate physiological pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Abbreviations

4-AP:

4-Aminopyridine

di-8-ANEPPS:

1-(3-Sulfonatopropyl)-4-[beta [2-(di-n-octylamino)-6-naphtyl]vinyl] pyridinium betaine

ELF:

Extremely-low frequency

FcγR:

Fcγ receptor

FITC:

Fluorescein isothiocyanate

FL-DHP:

DM-bodipy (−)-dihydropyridine

FMLP:

N-formyl-met-leu-phe

HBSS:

Hanks‘ buffered salt solution

pHBAH:

p-hydroxybenzoic acid hydrazide

HQ:

Hydroxyquinone

mβCD:

Methyl-β-cyclodextrin

MPO:

Myeloperoxidase

OTP:

Optical transmembrane potential

PMA:

Phorbol myristate acetate

PMT:

Photomultiplier tube

RET:

Resonance energy transfer

ROM:

Reactive oxygen metabolite

SHA:

Salicylhydroxamic acid

SOC:

Store-operated channel

TEA:

Tetraethylammonium chloride

TRITC:

Tetramethylisothiocyanate

TRP:

Transient receptor potential-like

References

  • Aas V, Larsen K, Iverson J (1998) IFN-gamma induces calcium entry in human neutrophils. J Interferon Cytokine Res 18:197–205

    PubMed  Google Scholar 

  • Aas V, Larsen K, Iverson LG (1999) Interferon-gamma elicits a G-protein-dependent Ca2+ signal in human neutrophils after depletion of intracellular Ca2+ stores. Cell Signal 11:101–110

    Article  PubMed  Google Scholar 

  • Adachi Y, Kindzelskii AL, Ohno N, Yadomae T, Petty HR (1999) Amplitude and frequency modulation of metabolic signals in leukocytes: synergistic role in interferon-γ and interleukin-6-mediated cell activation. J Immunol 163:4367–4374

    PubMed  Google Scholar 

  • Albrecht E, Petty HR (1998) Cellular memory: neutrophil orientation reverses during temporally decreasing chemoattractant concentrations. Proc Natl Acad Sci USA 95:5039–5044

    Article  PubMed  ADS  Google Scholar 

  • Andreasen D, Jensen BL, Hansen PB, Kwon TH, Nielsen S, Skott O (2000) The alpha(1G)-subunit of a voltage-dependent Ca(2+) channel is localized in rat distal nephron and collecting duct. Am J Physiol Renal Physiol 279:F997–F1005

    PubMed  Google Scholar 

  • Bassett CAL (1993) Beneficial effects of electromagnetic fields. J Cell Biochem 51:387–393

    PubMed  Google Scholar 

  • Berger W, Prinz H, Striessnig J, Kang H-C, Haugland R, Glossmann H (1994) Complex molecular mechanism for dihydropyridine binding to L-type Ca2+ channels as revealed by fluorescence resonance energy transfer. Biochemistry 33:11875–11883

    Article  PubMed  Google Scholar 

  • Berton G, Zeni L, Cassatella MA, Rossi F (1986) Gamma interferon is able to enhance the oxidative metabolism of human neutrophils. Biochem Biophys Res Commun 138:1276–1282

    Article  PubMed  Google Scholar 

  • Bilici D, Akpinar E, Gursan N, Dengiz GO, Bilici S, Altas S (2001) Protective effect of T-type calcium channel blocker in histamine-induced paw inflammation in rat. Pharmacol Res 44:527–31

    Article  PubMed  Google Scholar 

  • Blunck R, Scheel O, Muller M, Brandenburg K, Seitzer U, Seydel U (2001) New insights into endotoxin-induced activation of macrophages: involvement of a K+ channel in transmembrane signaling. J Immunol 166:1009–1015

    PubMed  Google Scholar 

  • Bravo-Zehnder M, Orio P, Norambuena A, Wallner M, Meera P, Toro L, Latorre R, Gonzalez A (2000) Apical sorting of a voltage- and Ca2+-activated K+ channel alpha-subunit in Madin-Darby canine kidney cells is independent of N-glycosylation. Proc Natl Acad Sci USA 97:13114–13119

    Article  PubMed  ADS  Google Scholar 

  • Brazer SC, Singh BB, Liu X, Swaim W, Ambudkar IS (2003) Caveolin-1 contributes to assembly of store-operated Ca2+ influx channels by regulating plasma membrane localization of TRPC1. J Biol Chem 278:27208–27215

    Article  PubMed  Google Scholar 

  • Brighton CT, Wang W, Seldes R, Zhang G, Pollack SR (2001) Signal transduction in electrically stimulated bone cells. J Bone Joint Surg Am 83A:1514–1523

    Google Scholar 

  • Cho MR, Thjatte HS, Silvia MT, Golan DE (1999) Transmembrane calcium influx induced by AC electric fields. FASEB J 13:677–683

    PubMed  Google Scholar 

  • Davies B, Edwards SW (1989) Inhibition of myeloperoxidase by salicylhydroxamic acid. Biochem J 258:801–806

    PubMed  Google Scholar 

  • Ding AH, Nathan CF, Stuehr DJ (1988) Release of reactive nitrogen intermediates and reactive oxygen intermediates from mouse peritoneal macrophages. J Immunol 141:2407–2412

    PubMed  Google Scholar 

  • Duke TAJ, Bray D (1999) Heightened sensitivity of a lattice of membrane receptors. Proc Natl Acad Sci USA 96:10104–10108

    Article  PubMed  ADS  Google Scholar 

  • Dykstra M, Cherukuri A, Sohn HW, Tzeng SJ, Pierce SK (2003) Location is everything: lipid rafts and immune cell signaling. Annu Rev Immunol 21:457–481

    Article  PubMed  Google Scholar 

  • Eichwald C, Kaiser F (1993) Model for receptor-controlled cytosolic calcium oscillations and for external influences on the signal pathway. Biophys J 65:2047–2058

    PubMed  Google Scholar 

  • Eichwald C, Kaiser F (1995) Model for external influences on cellular signal transduction pathways including cytosolic calcium oscillations. Bioelectromagnetics 16:75–85

    PubMed  Google Scholar 

  • Fang KS, Farboud B, Nuccitelli R, Isseroff RR (1998) Migration of human keratinocytes in electric fields requires growth factors and extracellular calcium. J Invest Dermatol 111:571–576

    Article  Google Scholar 

  • Franke K, Gruler H (1994) Directed cell movement in pulsed electric fields. Z Naturforsch 49c:241–249

    Google Scholar 

  • Galvanovskis J, Sandblom J (1997) Amplification of electromagnetic signals by ion channels. Biophys J 73:3056–3065

    PubMed  Google Scholar 

  • Gamberucci A, Giurisato E, Pizzo P, Tassi M, Giunti R, McIntosh DP, Benedetti A (2000) Diacylglycerol activates the influx of extracellular cations in T-lymphocytes independently of intracellular calcium-store depletion and possibly involving endogenous TRP6 gene products. Biochem J 364:245–254

    Google Scholar 

  • Goligorsky MS, Colflesh D, Gordienko D, Moore LC (1995) Branching points of renal resistance arteries are enriched L-type calcium channels and initiate vasoconstriction. Am J Physiol 268:F251–F257

    PubMed  Google Scholar 

  • Haga Y, Dumitrescu A, Zhang Y, Stain-Malmgren R, Sjoquist PO (1996) Effects of calcium blockers on the cytosolic calcium, H2O2 production and elastase release in human neutrophils. Pharmacol Toxicol 79:312–317

    PubMed  Google Scholar 

  • Halaszovich CR, Zitt C, Jungling E, Luckhoff A (2000) Inhibition of TRP3 channels by lanthanides. Block from the cytosolic side of the plasma membrane. J Biol Chem 275:37423–37428

    Article  PubMed  Google Scholar 

  • Hayat S, Wigley CB, Robbins J (2003) Intracellular calcium handling in rat olfactory ensheathing cells and its role in axonal regeneration. Mol Cell Neurosci 22:259–270

    Article  PubMed  Google Scholar 

  • Heiner I, Eisfeld J, Halaszovich CR, Wehage E, Jungling E, Zitt C, Luckhoff A (2003) Expression profile of the transient receptor potential (TRP) family in neutrophil granulocytes: evidence for currents through long TRP channel 2 induced by ADP-ribose and NAD. Biochem J 371:1045–1053

    Article  PubMed  Google Scholar 

  • Hill WG, An B, Johnson JP (2002) Endogenously expressed epithelial sodium channel is present in lipid rafts in A6 cells. J Biol Chem 277:33541–33544

    Article  PubMed  Google Scholar 

  • Hoppe W, Lohmann W, Markl H, Ziegler H (1983) Biophysics. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Hotary KB, Robinson KR (1994) Endongenous electrical currents and voltage gradients in Xenopus embryos and the consequences of their disruption. Dev Biol 166:789–800

    Article  PubMed  Google Scholar 

  • Irita K, Fujita I, Takeshige K, Minakami S, Yoshitake J (1986) Calcium channel antagonist induced inhibition of superoxide production in human neutrophils. Mechanisms independent of antagonizing calcium influx. Biochem Pharmacol 35:3465–3471

    Article  PubMed  Google Scholar 

  • Itagakin K, Kannan KB, Livingston DH, Deitch EA, Fekete Z, Hauser CJ (2002) Store-operated calcium entry in human neutrophils reflects multiple contributions from independently regulated pathways. J Immunol 168:4063–4069

    PubMed  Google Scholar 

  • Jaffe LF, Nuccitelli R (1977) Electrical controls of development. Annu Rev Biophys Bioeng 6:445–476

    Article  PubMed  Google Scholar 

  • Jager U, Gruler H, Bultmann B (1988) Morphological changes and membrane potential of human granulocytes under influence of chemotactic peptide and/or echo-virus, type 9. Klin Wochenschr 66:434–436

    Article  PubMed  Google Scholar 

  • Jerlich A, Fritz G, Kharrazi H, Hammel M, Tschabuschnig S, Glatter O, Schaur RJ (2000) Comparison of HOCl traps with myeloperoxidase inhibitors in prevention of low density lipoprotein oxidation. Biochim Biophys Acta 1481:109–118

    PubMed  Google Scholar 

  • Kenny JS, Kisaalita WS, Rowland G, Thai C, Foutz T (1997) Quantitative study of calcium uptake by tumorigenic bone (TE-85) and neuroblastoma x glioma (NG108–15) cells exposed to extremely-low-frequency (ELF) electric fields. FEBS Lett 414:343–348

    Article  PubMed  Google Scholar 

  • Kindzelskii AL, Petty HR (2000) Extremely low frequency electric fields promote neutrophil extension, metabolic resonance and DNA damage during migration. Biochim Biophys Acta 1495:90–111

    Article  PubMed  Google Scholar 

  • Kindzelskii AL, Petty HR (2002) Apparent role of traveling metabolic waves in periodic oxidant release by living cells. Proc Natl Acad Sci USA 99:9207–9212

    Article  PubMed  ADS  Google Scholar 

  • Kindzelskii AL, Petty HR (2003) Intracellular calcium waves accompany neutrophil polarization, formylmethionylleucylphenylalanine stimulation, and phagocytosis: a high speed microscopy study. J Immunol 170:64–72

    PubMed  Google Scholar 

  • Kindzelskii AL, Laska ZO, Todd RF III, Petty HR (1996) Urokinase-type plasminogen activator receptor reversibly dissociates from complement receptor type 3 (αMβ2) during neutrophil polarization. J Immunol 156:297–309

    PubMed  Google Scholar 

  • Kindzelskii AL, Eszes MM, Todd RF III, Petty HR (1997) Proximity oscillations of complement receptor type 4 and urokinase receptors on migrating neutrophils are linked with signal transduction/metabolic oscillations. Biophys J 73:1777–1784

    PubMed  Google Scholar 

  • Kindzelskii AL, Yang Z, Nabel GJ, Todd RF III, Petty HR (2000) Ebola virus secretory glycoprotein (sGP) disrupts FcγRIIIB to CR3 proximity on neutrophils. J Immunol 164:953–958

    PubMed  Google Scholar 

  • Knaus HG, Moshammer T, Friedrich K, Kang HG, Haugland RP, Glossmann H (1992) In vivo labeling of L-type Ca2+ channels by fluorescent dihydropyridines: evidence for a functional, extracellular heparin-binding site. Proc Natl Acad Sci USA 89:3586–3590

    PubMed  ADS  Google Scholar 

  • Knaus HG, Moshammer T, Kang HG, Haugland RP, Glossmann H (1992) A unique fluorescent phenylakylamine probe for L-type Ca2+ channels. J Biol Chem 267:2179–2189

    PubMed  Google Scholar 

  • Koo GC, Blake JT, Talento A, Nguyen M, Lin S, Sirotina A, Shah K, Mulvany K, Hora Jr D, Cunningham P, Wunderler DL, McManus OB, Slaughter R, Bugianesi R, Felix J, Garcia M, Williamson J, Kaczorowski G, Sigal NH, Springer MS, Feeney W (1997) Blockade of the voltage-gated potassium channel Kv1.3 inhibits immune responses in vivo. J Immunol 158:5120–5128

    PubMed  Google Scholar 

  • Leonard RJ, Garcia ML, Slaughter RS, Reuben JP (1992) Selective blockers of voltage-gated K+ channels depolarize human T lymphocytes: mechanism of the antiproliferative effect of charybdotoxin. Proc Natl Acad Sci USA 89:10094–10098

    PubMed  ADS  Google Scholar 

  • Lewis RS, Cahalan MD (1995) Potassium and calcium channels in lymphocytes. Annu Rev Immunol 13:623–653

    Article  PubMed  Google Scholar 

  • Lin CS, Boltz RC, Blade JT, Nguyen M, Talento A, Fischer PA, Springer MS, Sigal NH, Slaughter RS, Garcia ML (1993) Voltage-gated potassium channels regulate calcium-dependent pathways involved in human T lymphocyte activation. J Exp Med 177:637–645

    Article  PubMed  Google Scholar 

  • Lindstrom E, Lindstrom P, Berglund A, Lundgren E, Mild KH (1995) Intracellular calcium oscillations in a T-cell line after exposure to extremely low-frequency magnetic fields with variable frequencies and flux densities. Bioelectromagnetics 16:41–47

    PubMed  Google Scholar 

  • Lockwich TP, Liu X, Singh BB, Jadlowiec J, Weiland S, Ambudkar IS (2000) Assembly of Trp1 in a signaling complex associated with caveolin-scaffolding lipid raft domains. J Biol Chem 275:11934–11942

    Article  PubMed  Google Scholar 

  • Lorich DG, Brighton CT, Gupta R, Corsetti JR, Levine SE, Gelb IB, Seldes R, Pollack SR (1998) Biochemical pathway mediating the response of bone cells to capacitive coupling. Clin Orthop 350:246–256

    PubMed  Google Scholar 

  • Luscinskas FW, Mark DE, Brunkhorst B, Lionetti FJ, Cragoe EJ Jr, Simons ER (1988) The role of transmembrane cationic gradients in immune complex stimulation of human polymorphonuclear leukocytes. J Cell Physiol 134:211–219

    Article  PubMed  Google Scholar 

  • Lyle DB, Ayotte RD, Sheppard AR, Adey WR (1988) Suppression of T-lymphocyte cytotoxicity following exposure to 60-Hz sinusoidal electric fields. Bioelectromagnetics 9:303–313

    PubMed  Google Scholar 

  • Lyle DB, Wang X, Ayotte RD, Sheppard AR, Adey WR (1991) Calcium uptake by leukemic and normal T-lymphocytes exposed to low frequency magnetic fields. Bioelectromagnetics 12:145–156

    PubMed  Google Scholar 

  • Majander A, Wikstrom M (1989) The plasma membrane potential of human neutrophils. Role of ion channels and the sodium/potassium pump. Biochim Biophys Acta 980:139–145

    PubMed  Google Scholar 

  • Manes S, Mira E, Gomez-Mouton C, Lacalle RA, Keller P, Labrador JP, Martinez-A C (1999) Membrane raft microdomains mediate front-rear polarity in migrating cells. EMBO J 18:6211–6220

    Article  PubMed  Google Scholar 

  • Marks PW, Maxfield FR (1990) Transient increases in cytosolic free calcium appear to be required for the migration of adherent human neutrophils. J Cell Biol 110:43–52

    Article  PubMed  Google Scholar 

  • Martens JR, Sakamoto N, Sullivan SA, Grobaski TD, Tamkun MM (2001) Isoform-specific localization of voltage-gated K+ channels to distinct lipid raft populations. Targeting of Kv1.5 to caveolae. J Biol Chem 276:8409–8414

    Article  PubMed  Google Scholar 

  • Maxfield FR, Kruskal BA (1987) Cytosolic free calcium increases before and oscillates during frustrated phagocytosis in macrophages. J Cell Biol 105:2685–2693

    Article  PubMed  Google Scholar 

  • Minke B, Cook B (2002) TRP channel proteins and signal transduction. Physiol Rev 82:429–472

    PubMed  Google Scholar 

  • Mori Y, Wakamori T, Miyakawa T, Hermosura M, Hara Y, Nishida M, Hirose K, Mizushima A, Kurosaki M, Mori E, Gotoh K, Okada T, Fleig A, Penner R, Iino M, Kurosaki T (2002) Transient receptor potential 1 regulates capacitative Ca(2+) entry and Ca(2+) release from endoplasmic reticulum in B lymphocytes. J Exp Med 195:673–681

    Article  PubMed  Google Scholar 

  • Nachman-Clewner M, St Jules R, Townes-Anderson E (1999) L-type calcium channels in the photoreceptor ribbon synapse: localization and role in plasticity. J Comp Neurol 415:1–16

    Article  PubMed  Google Scholar 

  • Neumann E (2000) Digression on chemical electromagnetic field effects in membrane signal transduction—cooperativity paradigm of the acetylcholine receptor. Bioelectrochemistry 52:43–49

    Article  PubMed  Google Scholar 

  • Nishimura KY, Isseroff RR, Nuccitelli R (1996) Human keratinocytes migrate towards the negative pole in direct current electric fields comparable to those measured in mammalian wounds. J Cell Sci 109:199–207

    PubMed  Google Scholar 

  • Nuccitelli R (1988) Physiological electric fields can influence cell motility, growth and polarity. Adv Cell Biol 2:213–233

    Google Scholar 

  • Olsen LF, Kummer U, Kindzelskii AL, Petty HR (2003) A model of the oscillatory metabolism of activated neutrophils. Biophys J 84:69–81

    PubMed  Google Scholar 

  • Onuma EK, Hui SW (1988) Electric field-directed cell shape changes, displacement, and cytoskeletal reorganization are calcium dependent. J Cell Biol 106:2067–2075

    Article  PubMed  Google Scholar 

  • Oshima T, Ikeda K, Furukawa M, Ueda N, Suzuki H, Takasaka T (1996) Distribution of Ca2+ channels on cochlear outer hair cells revealed by fluorescent dihydropyridines. Amer J Physiol 271:C944–C949

    PubMed  Google Scholar 

  • Perez-Reyes E (2003) Molecular physiology of low-voltage-activated T-type calcium channels. Physiol Rev 83:117–161

    PubMed  Google Scholar 

  • Perret S, Cantereau A, Audin J, Dufy B, Georgescauld D (1999) Interplay between Ca2+ influx underlies localized hyperpolarization-induced [Ca2+ ]i waves in prostatic cells. Cell Calcium 25:297–311

    Article  PubMed  Google Scholar 

  • Petty HR (1993) Molecular biology of membranes. Plenum Press, New York

    Google Scholar 

  • Petty HR (2000) Oscillatory signals in migrating neutrophils: Effects of time-varying chemical and electrical fields. In: Walleczek J (ed) Self-organized biological dynamics and nonlinear control by external stimuli. Cambridge University Press, Cambridge, pp 173–192

    Google Scholar 

  • Petty HR (2001) Neutrophil oscillations: temporal and spatiotemporal aspects of cell behavior. Immunol Res 23:125–134

    Google Scholar 

  • Petty HR, Kindzelskii AL (2000) Dissipative metabolic structures in living cells: observation of target patterns during cell adherence. J Phys Chem B 104:10952–10955

    Article  Google Scholar 

  • Petty HR, Worth RG, Kindzelskii AL (2000) Imaging sustained dissipative patterns in the metabolism of individual living cells. Phys Rev Lett 84:2754–2757

    Article  PubMed  ADS  Google Scholar 

  • Pike LJ (2003) Lipid rafts: bringing order to chaos. J Lipid Res 44:655–667

    Article  PubMed  MathSciNet  Google Scholar 

  • Pizzo P, Burgo A, Pozzan T, Fasolato C (2001) Role of capacitative calcium entry on glutamate-induced calcium influx in type-I rat cortical astrocytes. J Neurochem 79:98–109

    Article  PubMed  Google Scholar 

  • Rauer H, Grissmer S (1999) The effect of deep pore mutation on the action of phenylalkylamines on the Kv1.3 potassium channel. Br J Pharmacol 127:1065–1074

    Article  PubMed  Google Scholar 

  • Robe RJ, Grissmer S (2000) Block of the lymphocyte K+ channel mKv1.3 by the phenylalkylamine verapamil: kinetic aspects of block and disruption of accumulation of block by a single point mutation. Br J Pharmacol 131:1275–1284

    Article  PubMed  Google Scholar 

  • Rosenspire AJ, Kindzelskii AL, Petty HR (2000) Interferon-γ and sinusoidal electric fields signal by modulating NAD(P)H oscillations in polarized neutrophils. Biophys J 79:3001–3008

    PubMed  Google Scholar 

  • Rosenspire AJ, Kindzelskii AL, Petty HR (2001) Pulsed DC electric fields couple to natural NAD(P)H oscillations in HT1080 fibrosarcoma cells. J Cell Sci 114:1515–1526

    PubMed  Google Scholar 

  • Rosenspire AJ, Kindzelskii AL, Simon BJ, HR Petty (2003) Real time control of neutrophil metabolism by very weak ELF magnetic fields. Bioelectromagnetics Society Abstract Book 25:33

    Google Scholar 

  • Rothberg BS (2004) Allosteric modulation of ion channels: the case of maxi-K. Sci STKE (http://www.stke.org/cgi/content/full/sigtrans;2004/227/pe16)

  • Sadighi Akha AA, Willmott NJ, Brickley K, Dolphin AC, Galione A, Hunt SV (1996) Anti-Ig-induced calcium influx in rat B lymphocytes mediated by cGMP through a dihydropyridine-sensitive channel. J Biol Chem 271:7297–7300

    Article  PubMed  Google Scholar 

  • Schienbein M, Gruler H (1995) Chemical amplifier, self-ignition, and amoeboid cell migration. Phys Rev E 52:4183–4197

    Article  ADS  Google Scholar 

  • Schild D, Geiling H, Bischofberger J (1995) Imaging of L-type Ca2+ channels in olfactory bulb neurons using fluorescent dihydropyridine and a styryl dye. J Neurosci Methods 59:183–190

    Article  PubMed  Google Scholar 

  • Sehgal G, Zhang K, Todd RF, Boxer LA, Petty HR (1993) Lectin-like inhibition of immune complex receptor-mediated stimulation of neutrophils. Effects on cytosolic calcium release and superoxide production. J Immunol 150:4571–4580

    PubMed  Google Scholar 

  • Shaw SL, Quatrano RS (1990) Polar localization of a dihydropyridine receptor on living Fucus zygotes. J Cell Sci 109:335–342

    Google Scholar 

  • Sheridan DM, Isseroff RR, Nuccitelli R (1996) Imposition of a physiologic DC electric field alters the migratory response of human keratinocytes on extracellular matrix molecules. J Invest Dermatol 106:642–646

    Article  PubMed  Google Scholar 

  • Shi R, Borgens RB (1995) Three-dimensional gradients of voltage during development of the nervous system’s invisible coordinates for the establishment of embryonic pattern. Dev Dyn 202:101–114

    PubMed  Google Scholar 

  • Silvius JR (2003) Role of cholesterol in lipid raft formation: lessons from lipid model systems. Biochim Biophys Acta 1610:174–183

    Article  Google Scholar 

  • Simchowitz L, Spilberg I (1979) Generation of superoxide radicals by human peripheral neutrophils activated by chemotactic factor. Evidence for the role of calcium. J Lab Clin Med 93:583–593

    PubMed  Google Scholar 

  • Sitrin RG, Pan PM, Blackwood RA, Huang J-B, Petty HR (2001) Evidence for a signaling partnership between urokinase receptors (CD87) and L-selectin (CD62L) in human polymorphonuclear neutrophils. J Immunol 166:4822–4825

    PubMed  Google Scholar 

  • Sitrin RG, Johnson DR, Pan PM, Harsh DM, Huang J, Petty HR, Blackwood RA (2004) Lipid raft compartmentalization of urokinase receptor signaling in human neutrophils. Am J Respir Cell Mol Biol 30:233–241

    Article  PubMed  Google Scholar 

  • Stewart R, Erskine L, McCaig CD (1995) Calcium channel subtypes and intracellular calcium stores modulate electric field-stimulated and–oriented nerve growth. Dev Biol 171:340–351

    Article  PubMed  Google Scholar 

  • Trevino CL, Serrano CJ, Beltran C, Felix R, Darszon A (2001) Identification of mouse trp homologs and lipid rafts from spermatogenic cells and sperm. FEBS Lett 509:119–125

    Article  PubMed  Google Scholar 

  • Trollinger DR, Isseroff RR, Nuccitelli R (2002) Calcium channel blockers inhibit galvanotaxis in human keratinocytes. J Cell Physiol 193:1–9

    Article  PubMed  Google Scholar 

  • Uckum FM, Kurosaki T, Jin J, Jun X, Morgan A, Takata M, Bolen J, Luben R (1995) Exposure of B-lineage lymphoid cells to low energy electromagnetic fields stimulates Lyn kinase. J Biol Chem 270:27666–27670

    Article  PubMed  Google Scholar 

  • Vallee N, Briere C, Petitprez M, Barthou H, Souvre A, Alibert G (1997) Studies on ion channel antagonist-binding sites in sunflower protoplasts. FEBS Lett 411:115–118

    Article  PubMed  Google Scholar 

  • Vazquez G, Lievremont JP, St J Bird G, Putney JW Jr (2001) Human Trp3 forms both inositol trisphosphate receptor-dependent and receptor-independent store-operated cation channels in DT40 avian B lymphocytes. Proc Natl Acad Sci USA 98:11777–11782

    Article  PubMed  ADS  Google Scholar 

  • Visegrady A, Lakos Z, Czimbalek L, Somogyi B (2001) Stimulus-dependent control of inositol 1,4,5-trisphosphate-induced Ca(2+) oscillation frequency by the endoplasmic reticulum Ca(2+)-ATPase. Biophys J 81:1398–1405

    Article  PubMed  Google Scholar 

  • Walleczek J, Liburdy RP (1990) Nonthermal 60 Hz sinusoidal magnetic field exposure enhances 45Ca2+ uptake in rat thymocytes: dependence on mitogen activation. FEBS Lett 271:157–160

    Article  PubMed  Google Scholar 

  • Wang E, Zhao M, Forrester JV, McCaig CD (2000) Re-orientation and faster, directed migration of lens epithelial cells in a physiological electric field. Exp Eye Res 71:91–98

    Article  PubMed  Google Scholar 

  • Weiergraber M, Pereverzev A, Vajna R, Henry M, Schramm M, Nastainczyk W, Grabsch H, Schneider T (2000) Immunodetection of alpha1E voltage-gated Ca(2+) channel in chromogranin-positive muscle cells of rat heart, and in distal tubules of human kidney. J Histochem Cytochem 48:807–819

    PubMed  Google Scholar 

  • Willmott NJ, Choudhury Q, Flower RJ (1996) Functional importance of the dihydropyridine-sensitive, yet voltage-insensitive store-operated Ca2+ influx of U937 cells. FEBS Lett 394:159–164

    Article  PubMed  Google Scholar 

  • Witkowski FX, Leon LJ, Penkoske PA, Giles WR, Spano ML, Ditto WL, Winfree AT (1998) Spatiotemporal evolution of ventricular fibrillation. Nature 392:78–82

    Article  PubMed  ADS  Google Scholar 

  • Worth RG, Kim M-K, Kindzelskii AL, Petty HR, Schreiber AD (2003) Signal sequence within FcγRIIA controls calcium wave propagation patterns: apparent role in phagolysosome fusion. Proc Natl Acad Sci USA 100:4533–4538

    Article  PubMed  ADS  Google Scholar 

  • Xu X, Hakansson L (2002) Degranulation of primary and secondary granules in adherent human neutrophils. Scand J Immunol 55:178–188

    Article  PubMed  Google Scholar 

  • Yost MG, Liburdy RP (1992) Time-varying and static magnetic fields act in combination to alter calcium signal transduction in lymphocytes. FEBS Lett 296:117–122

    Article  PubMed  Google Scholar 

  • Zarewych DM, Kindzelskii AL, Todd III RF, Petty HR (1996) Lipopolysaccharide induces CD14 association with complement receptor type 3 which is reversed by neutrophil adhesion. J Immunol 156:430–433

    PubMed  Google Scholar 

  • Zhuang H, Wang W, Seldes RM, Tahernia AD, Fan H, Brighton CT (1997) Electrical stimulation induces the level of TGF-beta 1 mRNA in osteoblastic cells by a mechanism involving calcium/calmodulin pathway. Biochem Biophys Res Commun 237:225–229

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH Grant CA74120 (H.R.P.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Howard R. Petty.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kindzelskii, A.L., Petty, H.R. Ion channel clustering enhances weak electric field detection by neutrophils: apparent roles of SKF96365-sensitive cation channels and myeloperoxidase trafficking in cellular responses. Eur Biophys J 35, 1–26 (2005). https://doi.org/10.1007/s00249-005-0001-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-005-0001-2

Keywords

Navigation