Skip to main content
Log in

Morphological, Bacterial, and Secondary Metabolite Changes of Aplysina aerophoba upon Long-Term Maintenance Under Artificial Conditions

  • Microbiology of Aquatic Systems
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

The aim of this study was to analyze successional changes in the bacterial community over a period of 6 months of cultivation of Aplysina aerophoba sponges under different artificial cultivation conditions by use of denaturing gradient gel electrophoresis (DGGE). The cultivation conditions varied concerning the water temperature (20 ± 2 °C and 25 ± 2 °C) of the aquaria, additional illumination of one aquarium, and feeding of the sponges. Amplicons from DGGE separation of dominant colonizing or variably appearing bacteria were sequenced and aligned for taxonomical identification. In addition, secondary metabolites typically found in A. aerophoba were analyzed to investigate changes in the natural product profile during cultivation. The cultivation of sponges under any given condition did not lead to a depletion of their bacterial community in the course of the experiment. On the contrary, the distinctive set of associated bacteria was maintained in spite of a dramatic loss of biomass and morphological degradation during the cultivation period. Generally, all sequences obtained from the DGGE gels were related to bacteria of five phyla: Actinobacteria, Cyanobacteria, α-Proteobacteria, γ-Proteobacteria, and Chloroflexi. Despite the overall stability of the bacterial community in A. aerophoba, an unambiguous variability was detected for the CyanobacteriaA. aerophoba clone TK09”. This variability was ascribed to the predominant light conditions. The analysis of the metabolic pattern revealed that the concentration of a class of characteristic-brominated compounds typically found in A. aerophoba, like aeroplysinin-1, aerophobin-1, aerophobin-2, and isofistularin-3, increased over the 6 months of cultivation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Bergquist PR (1978) Sponges. University of California Press: Berkeley & Los Angeles

    Google Scholar 

  2. Van Soest RWM (1996) Porifera. In: Westheide R, Rieger R (eds) Spezielle zoologie, Teil 1: Einzeller und wirbellose tiere. Gustav Fischer, New York, pp 98–119

    Google Scholar 

  3. Ruppert EE, Barnes RD (1994) Sponges and placozoans. In: Ruppert EE, Barnes RD (eds) Invertebrate zoology. Saunders College, Philadelphia, pp 68–94

    Google Scholar 

  4. Friedrich AB, Fischer I, Proksch P, Hacker H, Hentschel U (2001) Temporal variation of the microbial community associated with the Mediterranean sponge Aplysina aerophoba. FEMS Microbiol Ecol 38:105–113

    Article  CAS  Google Scholar 

  5. Wilkinson CR, Garrone R, Vacelet J (1984) Marine sponges discriminate between food bacteria and bacterial symbionts: electron microscope radioautography and in situ evidence. Proc R Soc B 220:519–528

    Article  Google Scholar 

  6. Wehrl M, Steinert M, Hentschel U (2007) Bacterial uptake by the marine sponge Aplysina aerophoba. Microb Ecol 53:355–365

    Article  PubMed  Google Scholar 

  7. Wilkinson CR (1978) Microbial associations in sponges. III. Ultrastructure of in situ associations in coral reef sponges. Mar Biol 49:177–185

    Article  Google Scholar 

  8. Hentschel U, Usher KM, Taylor MW (2006) Marine sponges as microbial fermenters. FEMS Microbiol Ecol 55:167–177

    Article  PubMed  CAS  Google Scholar 

  9. Ribes M, Coma R, Gili J-M (1999) Seasonal variation of particulate organic carbon, dissolved organic carbon and the contribution of microbial communities to the live particulate organic carbon in a shallow near-bottom ecosystem at the northwestern Mediterranean sea. J Plankton Res 21:1077–1100

    Article  Google Scholar 

  10. Hentschel U, Fieseler L, Wehrl M, Gernert C, Steinert M, Hacker J, and Horn M (2003). Microbial diversity of marine sponges. In: Müller WEG (ed), Marine molecular biotechnology-Sponges (Porifera), Springer-Verlag, Berlin, Heidelberg 59–88

  11. Wilkinson CR, Nowak M, Austin B, and Colwell RR (1981) Specifity of bacterial symbionts in Mediterranean and Great Barrier Reef sponges. Microb Ecol 7:13–21

    Article  Google Scholar 

  12. Fieseler L, Horn M, Wagner M, and Hentschel U (2004) Discovery of the novel candidate phylum “Poribacteria” in marine sponges. Appl Environ Microbiol 70:3724–3732

    Article  PubMed  CAS  Google Scholar 

  13. Thiel V, Neulinger SC, Staufenberger T, Schmaljohann R, and Imhoff JF (2007) Spatial distribution of sponge-associated bacteria in the Mediterranean sponge Tethya aurantium. FEMS Microbiol Ecol 59:47–63

    Article  PubMed  CAS  Google Scholar 

  14. Taylor MW, Schupp PJ, Dahllöf I, Kjelleberg S, Steinberg PD (2004) Host specificity in marine sponge-associated bacteria, and potential implications for marine microbial diversity. Environ Microbiol 6:121–130

    Article  PubMed  Google Scholar 

  15. Wilkinson CR (1979) Nutrient translocation from symbiotic cyanobacteria to coral reef sponges. In: Lévi C, Boury-Esnault N (eds) Biologie des spongiaires, vol 291. Colloques Internationaux du C.N.R.S, Paris, pp 373–380

    Google Scholar 

  16. Blunt JW, Copp BR, Munro MHG, Northcote PT, Prinsep MR (2003) Marine natural products. Nat Prod Rep 20:1–48

    Article  PubMed  CAS  Google Scholar 

  17. Blunt JW, Copp BR, Munro MHG, Northcote PT, Prinsep MR (2004) Marine natural products. Nat Prod Rep 21:1–49

    Article  PubMed  CAS  Google Scholar 

  18. Blunt JW, Copp BR, Munro MHG, Northcote PT, Prinsep MR (2005) Marine natural products. Nat Prod Rep 22:15–61

    Article  PubMed  CAS  Google Scholar 

  19. Blunt JW, Copp BR, Munro MHG, Northcote PT, Prinsep MR (2006) Marine natural products. Nat Prod Rep 23:26–78

    Article  PubMed  CAS  Google Scholar 

  20. Blunt JW, Copp BR, Hu WP, Munro MHG, Northcote PT, Prinsep MR (2007) Marine natural products. Nat Prod Rep 24:31–86

    Article  PubMed  CAS  Google Scholar 

  21. Garson MJ (1994) The biosynthesis of sponge secondary metabolites: why it is important. In: van Soest RWM, van Kempen TMG, Braekman JC (eds) Sponges in time and space. Balkema, Rotterdam, pp 427–440

    Google Scholar 

  22. Osinga R, Tramper J, Wijffels RH (1999) Cultivation of marine sponges. Mar Biotechnol 1:509–532

    Article  PubMed  CAS  Google Scholar 

  23. Osinga R, Tramper J, Wijffels RH (1998) Cultivation of marine sponges for metabolite production: application for biotechnology? Trends Biotechnol 16:130–134

    Article  CAS  Google Scholar 

  24. Unson MD, Holland ND, Faulkner DJ (1994) A brominated secondary metabolite synthesized by the cyanobacterial symbiont of a marine sponge and accumulation of the crystalline metabolite in the sponge tissue. Mar Biol Res 119:1–11

    Article  CAS  Google Scholar 

  25. Garson MJ, Flowers AE, Webb RI, Charan RD, McCaffrey EJ (1998) A sponge/dinoflagellate association in the haplosclerid sponge Haliclona sp.: cellular origin of cytotoxic alkaloids by Percoll density gradient fractionation. Cell Tissue Res 293:365–373

    Article  PubMed  CAS  Google Scholar 

  26. Turon X, Becerro MA, Uriz MJ (2000) Distribution of brominated compounds within the sponge Aplysina aerophoba: coupling of X-ray microanalysis with cryofixation techniques. Cell Tissue Res 301:311–322

    Article  PubMed  CAS  Google Scholar 

  27. Taylor MW, Radax R, Steger D, Wagner M (2007) Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiol Mol Biol R 71:295–347

    Article  CAS  Google Scholar 

  28. Hausmann R, Vitello M, Leitermann F, and Syldatk C (2006) Advances in the production of sponge biomass Aplysina aerophoba - A model sponge for ex situ sponge biomass production. J Biotechnol 124:117–127

    Article  PubMed  CAS  Google Scholar 

  29. Thoms C, Horn M, Wagner M, Henschel U, Proksch P (2003) Monitoring microbial diversity and natural product profiles of the sponge Aplysina cavernicola following transplantation. Mar Biol 142:685–692

    CAS  Google Scholar 

  30. Hoffmann F, Rapp HT, Reitner J (2006) Monitoring microbial community composition by fluorescence in situ hybridization during cultivation of the marine cold-water sponge Geodia barretti. Mar Biotechnol 8:373–379

    Article  PubMed  CAS  Google Scholar 

  31. Mohamed NM, Enticknap JJ, Lohr JE, McIntosh SM, Hill RT (2008) Changes in bacterial communities of the marine sponge Mycale laxissima on transfer into aquaculture. Appl Environ Microbiol 74:1209–1222

    Article  PubMed  CAS  Google Scholar 

  32. Webster NS, Cobb RE, Negri AP (2008) Temperature thresholds for bacterial symbiosis with a sponge. ISME J 2:830–842

    Article  PubMed  CAS  Google Scholar 

  33. Webster NS, Xavier JR, Freckelton M, Motti CA, Cobb R (2008) Shifts in microbial and chemical patterns within the marine sponge Aplysina aerophoba during a disease outbreak. Environ Microbiol 10:3366–3376

    Article  PubMed  CAS  Google Scholar 

  34. Klöppel A, Pfannkuchen M, Putz A, Proksch P, Brummer F (2008) Ex situ cultivation of Aplysina aerophoba close to in situ conditions: ecological, biochemical and histological aspects. Mar Ecol 29:259–272

    Article  Google Scholar 

  35. Hentschel U, Hopke J, Horn M, Friedrich AB, Wagner M, Hacker J, Moore BS (2002) Molecular evidence for a uniform microbial community in sponges from different oceans. Appl Environ Microbiol 68:4431–4440

    Article  PubMed  CAS  Google Scholar 

  36. Hentschel U, Schmid M, Wagner M, Fieseler L, Gernert C, Hacker J (2001) Isolation and phylogenetic analysis of bacteria with antimicrobial activities from the Mediterranean sponges Aplysina aerophoba and Aplysina cavernicola. FEMS Microbiol Ecol 35:305–312

    Article  PubMed  CAS  Google Scholar 

  37. Friedrich AB, Merkert H, Fendert T, Hacker J, Proksch P, Hentschel U (1999) Microbial diversity in the marine sponge Aplysina cavernicola (formerly Verongia cavernicola) analyzed by fluorescence in situ hybridisation (FISH). Mar Biol 134:461–470

    Article  Google Scholar 

  38. Teeyapant R, Woerdenbag HJ, Kreis P, Hacker J, Wray V, Witte L, Proksch P (1993) Antibiotic and cytotoxic activity of brominated compounds from the marine sponge Verongia aerophoba. Z Naturforsch 48:939–945

    CAS  Google Scholar 

  39. Ebel R, Brenzinger M, Kunze A, Gross HJ, Proksch P (1997) Wound activation of protoxins in marine sponge Aplysina aerophoba. J Chem Ecol 23:1451–1462

    Article  CAS  Google Scholar 

  40. Ciminiello P, Fattorusso E, Forino M, Magno S (1997) Chemistry of Verongida sponges. VIII—bromocompounds from the Mediterranean sponges Aplysina aerophoba and Aplysina cavernicola. Tetrahedron 53:6565–6572

    Article  CAS  Google Scholar 

  41. Thoms C, Wolff M, Padmakumar K, Ebel R, Proksch P (2004) Chemical defense of Mediterranean sponges Aplysina cavernicola and Aplysina aerophoba. Z Naturforsch 59:113–122

    CAS  Google Scholar 

  42. Teeyapant R, Kreis P, Wray V, Witte L, Proksch P (1993) Brominated secondary compounds from the marine sponge Verongia aerophoba and the sponge feeding gastropod Tylodina perversa. Z Naturforsch 48:640–644

    CAS  Google Scholar 

  43. Zavodnik D (1995) A northern Adriatic centenarian: the marine research station at Rovinj. Helgol Meeresunters 49:441–453

    Article  Google Scholar 

  44. Muyzer G, Dewaal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction amplified genes coding for 16S ribosomal-RNA. Appl Environ Microbiol 59:695–700

    PubMed  CAS  Google Scholar 

  45. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  46. Clarke KR, Warwick RM (2001) Change in marine communities: an approach to statistical analysis and interpretation. Primer-E Ltd: Plymouth, United Kingdom

    Google Scholar 

  47. Clarke KR (1993) Nonparametric multivariate analyses of changes in community structure. Aust J Ecol 18:117–143

    Article  Google Scholar 

  48. Hill M, Hill A, Lopez N, Harriott O (2006) Sponge-specific bacterial symbionts in the Caribbean sponge, Chondrilla nucula (Demospongiae, Chondrosida). Mar Biol 148:1221–1230

    Article  Google Scholar 

  49. Thiel V, Leininger S, Schmaljohann R, Brummer F, Imhoff JF (2007) Sponge-specific bacterial associations of the Mediterranean sponge Chondrilla nucula (Demospongiae, Tetractinomorpha). Microb Ecol 54:101–111

    Article  PubMed  Google Scholar 

  50. Fromin N, Hamelin J, Tarnawski S, Roesti D, Jourdain-Miserez K, Forestier N, Teyssier-Cuvelle S, Gillet F, Aragno M, Rossi P (2002) Statistical analysis of denaturing gel electrophoresis (DGE) fingerprinting patterns. Environ Microbiol 4:634–643

    Article  PubMed  CAS  Google Scholar 

  51. Myers RM, Fischer SG, Lerman LS, Maniatis T (1985) Nearly all single base substitutions in DNA fragments joined to a GC-clamp can be detected by denaturing gradient gel-electrophoresis. Nucleic Acids Res 13:3131–3145

    Article  PubMed  CAS  Google Scholar 

  52. Diez B, Pedros-Alio C, Marsh TL, Massana R (2001) Application of denaturing gradient gel electrophoresis (DGGE) to study the diversity of marine picoeukaryotic assemblages and comparison of DGGE with other molecular techniques. Appl Environ Microbiol 67:2942–2951

    Article  PubMed  CAS  Google Scholar 

  53. Saller U (1990) Formation and construction of asexual buds of the fresh-water sponge Radiospongilla-cerebellata (Porifera, Spongillidae). Zoomorphology 109:295–301

    Article  Google Scholar 

  54. Wilkinson CR, Vacelet J (1979) Transplantation of marine sponges to different conditions of light and current. J Exp Mar Biol Ecol 37:91–104

    Article  Google Scholar 

  55. Thoms C, Ebel R, Proksch P (2006) Activated chemical defense in Aplysina sponges revisited. J Chem Ecol 32:97–123

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge support by the Institute “Ruđer Bošković” in Rovinj, Croatia, in the collection of samples of marine sponges. This work was supported by the German Federal Ministry of Education and Research as part of the research network BIOTECmarin (03F0414G).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Berna Gerçe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gerçe, B., Schwartz, T., Voigt, M. et al. Morphological, Bacterial, and Secondary Metabolite Changes of Aplysina aerophoba upon Long-Term Maintenance Under Artificial Conditions. Microb Ecol 58, 865–878 (2009). https://doi.org/10.1007/s00248-009-9560-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-009-9560-6

Keywords

Navigation