Skip to main content
Log in

Species Diversity and Substrate Utilization Patterns of Thermophilic Bacterial Communities in Hot Aerobic Poultry and Cattle Manure Composts

  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

This study investigated the species diversity and substrate utilization patterns of culturable thermophilic bacterial communities in hot aerobic poultry and cattle manure composts by coupling 16S rDNA analysis with Biolog data. Based on the phylogenetic relationships of 16S rDNA sequences, 34 thermophilic (grown at 60°C) bacteria isolated during aerobic composting of poultry manure and cattle manure were classified as Bacillus licheniformis, B. atrophaeus, Geobacillus stearothermophilus, G. thermodenitrificans, Brevibacillus thermoruber, Ureibacillus terrenus, U. thermosphaericus, and Paenibacillus cookii. In this study, B. atrophaeus, Br. thermoruber, and P. cookii were recorded for the first time in hot compost. Physiological profiles of these bacteria, obtained from the Biolog Gram-positive (GP) microplate system, were subjected to principal component analysis (PCA). All isolates were categorized into eight different PCA groups based on their substrate utilization patterns. The bacterial community from poultry manure compost comprised more divergent species (21 isolates, seven species) and utilized more diverse substrates (eight PCA groups) than that from cattle manure compost (13 isolates, five species, and four PCA groups). Many thermophilic bacteria isolated in this study could use a variety of carboxylic acids. Isolate B110 (from poultry manure compost), which is 97.6% similar to U. terrenus in its 16S rDNA sequence, possesses particularly high activity in utilizing a broad spectrum of substrates. This isolate may have potential applications in industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Araujo, A, Ward, OP (1990) Hemicellulases of Bacillus species: preliminary comparative studies on production and properties of mannanases and galactanases. J Appl Bacteriol 68: 253–261

    PubMed  CAS  Google Scholar 

  2. Asai, K, Baik, SH, Kasahara, Y, Moriya, S, Ogasawara, N (2000) Regulation of the transport system for C4-dicarboxylic acids in Bacillus subtilis. Microbiology 146: 263–271

    PubMed  CAS  Google Scholar 

  3. Blanc, M, Marilley, L, Beffa, T, Aragno, M (1999) Rapid identification of heterotrophic, thermophilic, spore-forming bacteria isolated from hot composts. Int J Syst Bacteriol 47: 1246–1248

    Google Scholar 

  4. Blencke, HM, Homuth, G, Ludwig, H, Mader, U, Hecker, M, Stulke, J (2003) Transcriptional profiling of gene expression in response to glucose in Bacillus subtilis: regulation of the central metabolic pathways. Metab Eng 5: 133–149

    Article  PubMed  CAS  Google Scholar 

  5. Carpenter-Boggs, L, Kennedy, AC, Reganold, JP (1998) Use of phospholipid fatty acids and carbon source utilization patterns to track microbial community succession in developing compost. Appl Environ Microbiol 64: 4062–4064

    PubMed  CAS  Google Scholar 

  6. Chauhan, HJ, Domingo, GJ, Jung, HI, Perham, RN (2000) Sites of limited proteolysis in the pyruvate decarboxylase component of the pyruvate dehydrogenase multienzyme complex of Bacillus stearothermophilus and their role in catalysis. Eur J Biochem 267: 7158–7169

    Article  PubMed  CAS  Google Scholar 

  7. Choi, K-H, Dobbs, FC (1999) Comparison of two kinds of Biolog microplates (GN and ECO) in their ability to distinguish among aquatic microbial communities. J Microbiol Methods 36: 203–213

    Article  PubMed  CAS  Google Scholar 

  8. Coleman, ML, Sullivan, MB, Martiny, AC, Steglich, C, Barry, K, DeLong, EF, Chisholm, SW (2006) Genomic islands and the ecology and evolution of Prochlorococcus. Science 311: 1768–1770

    Article  PubMed  CAS  Google Scholar 

  9. Dees, PM, Ghiorse, WC (2001) Microbial diversity in hot synthetic compost as revealed by PCR-amplified rRNA sequences from cultivated isolates and extracted DNA. FEMS Microbiol Ecol 35: 207–216

    Article  PubMed  CAS  Google Scholar 

  10. Ethier, N, Talbot, G., Sygusch, J (1998) Gene cloning, DNA sequencing, and expression of thermostable beta-mannanase from Bacillus stearothermophilus. Appl Environ Microbiol 64: 4428–4432

    PubMed  CAS  Google Scholar 

  11. Fawcett, JK (1954) The semi-micro Kjeldahl method for the determination of nitrogen. J Med Lab Technol 12: 1–22

    PubMed  CAS  Google Scholar 

  12. Felsenstein, J (2004) Phylip (Phylogeny inference package) version 3.62. Distributed by the author. Department of Genetics, University of Washington, Seattle.

    Google Scholar 

  13. Fortnagel, P, Freese, E (1968) Analysis of sporulation mutants. II. Mutants blocked in the citric acid cycle. J Bacteriol 95: 1431–1438

    PubMed  CAS  Google Scholar 

  14. Fritze, D, Pukall, R (2001) Reclassification of bioindicator strains Bacillus subtilis DSM 675 and Bacillus subtilis DSM 2277 as Bacillus atrophaeus. Int J Syst Evol Microbiol 51: 35–37

    PubMed  CAS  Google Scholar 

  15. Gagné, A, Chicoine, M, Morin, A, Houde, A (2001) Phenotypic and genotypic characterization of esterase-producing Ureibacillus thermosphaericus isolated from an aerobic digestor of swine waste. Can J Microbiol 47: 908–915

    Article  PubMed  Google Scholar 

  16. Halebian, S, Harris, B, Finegold, SM, Rolfe, RD (1981) Rapid method that aids in distinguishing Gram-positive from Gram-negative anaerobic bacteria. J Clin Microbiol 13: 444–448

    PubMed  CAS  Google Scholar 

  17. Herrmann, RF, Shann, JF (1997) Microbial community changes during the composting of municipal solid waste. Microbial Ecol 33: 78–85

    Article  Google Scholar 

  18. Juteau, P, Tremblay, D, Villemur, R, Bisaillon, JG, Beaudet, R (2005) Analysis of the bacterial community inhabiting an aerobic thermophilic sequencing batch reactor (AT-SBR) treating swine waste. Appl Microbiol Biotechnol 66: 115–122

    Article  CAS  Google Scholar 

  19. Kelsey, JC (1967) Use of gaseous antimicrobial agents with special reference to ethylene oxide. J Appl Bacteriol 30: 92–100

    PubMed  CAS  Google Scholar 

  20. Kimura, M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16: 111–120

    Article  PubMed  CAS  Google Scholar 

  21. Kunst, F, Ogasawara, N, Moszer, I, Albertini, AM, Alloni, G, Azevedo, V, Bertero, MG, Bessieres, P, Bolotin, A, Borchert, S, Borriss, R, Boursier, L, Brans, A, Braun, M, Brignell, SC, Bron, S, Brouillet, S, Bruschi, CV, Caldwell, B, Capuano, V, Carter, NM, Choi, SK, Codani, JJ, Connerton, IF, Danchin, A, et al. (1997) The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature 390: 249–256

    Article  PubMed  CAS  Google Scholar 

  22. Lane, DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (Eds.) Nucleic Acid Techniques in Bacterial Systematics, Wiley, Chichester, pp 115–174

    Google Scholar 

  23. Lebuhn, M, Achouak, W, Schloter, M, Berge, O, Meier, H, Barakat, M, Hartmann, A, Heulin, T (2000) Taxonomic characterization of Ochrobactrum sp. isolates from soil samples and wheat roots, and description of Ochrobactrum tritici sp. nov. and Ochrobactrum grignonense sp. nov. Int J Syst Evol Microbiol 50: 2207–2223

    PubMed  CAS  Google Scholar 

  24. Lin, EC, Iuchi, S (1991) Regulation of gene expression in fermentative and respiratory systems in Escherichia coli and related bacteria. Annu Rev Genet 25: 361–387

    Article  PubMed  CAS  Google Scholar 

  25. Logan, NA, De Clerck, E, Lebbe, L, Verhelst, A, Goris, J, Forsyth, G, Rodriguez-Diaz, M, Heyndrickx, M, De Vos, P (2004) Paenibacillus cineris sp. nov. and Paenibacillus cookii sp. nov., from Antarctic volcanic soils and a gelatin-processing plant. Int J Syst Evol Microbiol 54: 1071–1076

    Article  PubMed  CAS  Google Scholar 

  26. McInroy, SG, Campbell, CD, Haukka, KE, Odee, DW, Sprent, JI, Wang, WJ, Young, JP, Sutherland, JM (1999) Characterization of rhizobia from African acacias and other tropical woody legumes using Biolog and partial 16S rRNA sequencing. FEMS Microbiol Lett 170: 111–117

    PubMed  CAS  Google Scholar 

  27. McMullan, G, Christie, JM, Rahman, TJ, Banat, IM, Ternan, NG, Marchant, R (2004) Habitat, applications and genomics of the aerobic, thermophilic genus Geobacillus. Biochem Soc Trans 32: 214–217

    Article  PubMed  CAS  Google Scholar 

  28. Nelson, DW, Sommers, JE (1996) Total carbon, organic carbon, and organic matter. In: Bigham JM (Ed.) Methods of Soil Analysis: Part 3. Chemical Methods, Soil Science Society of America, Wisconsin, pp 961–1010

    Google Scholar 

  29. Nielsen, JE, Borchert, TV (2000) Protein engineering of bacterial alpha-amylases. Biochim Biophys Acta 1543: 253–274

    PubMed  CAS  Google Scholar 

  30. Niwa, T, Kawamura, Y, Katagiri, Y, Ezaki, T (2005) Lytic enzyme, labiase for a broad range of Gram-positive bacteria and its application to analyze functional DNA/RNA. J Microbiol Methods 61: 251–260

    Article  PubMed  CAS  Google Scholar 

  31. Palys, T, Nakamura, LK, Cohan, FM (1997) Discovery and classification of ecological diversity in the bacterial world: the role of DNA sequence data. Int J Syst Bacteriol 47: 1145–1156

    Article  PubMed  CAS  Google Scholar 

  32. Sohail, M (1998) A simple and rapid method for preparing genomic DNA from gram-positive bacteria. Mol Biotechnol 10: 191–193

    PubMed  CAS  Google Scholar 

  33. Steger, K, Jarvis, A, Smars, S, Sundh, I (2003) Comparison of signature lipid methods to determine microbial community structure in compost. J Microbiol Mehtods 55: 371–382

    Article  CAS  Google Scholar 

  34. Strom, PF (1985) Effect of temperature on bacterial species diversity in thermophilic solid-waste composting. Appl Environ Microbiol 50: 899–905

    PubMed  CAS  Google Scholar 

  35. Tanaka, K, Kobayashi, K, Ogasawara, N (2003) The Bacillus subtilis YufLM two-component system regulates the expression of the malate transporters MaeN (YufR) and YflS, and is essential for utilization of malate in minimal medium. Microbiology 149: 2317–2329

    Article  PubMed  CAS  Google Scholar 

  36. Thambirajah, JJ, Zulkali, MD, Hashim, MA (1995) Microbiological and biochemical changes during the composting of oil palm empty-fruit-bunches. Effect of nitrogen supplementation on the substrate. Biores Technol 52: 133–144

    Article  CAS  Google Scholar 

  37. Veith, B, Herzberg, C, Steckel, S, Feesche, J, Maurer, KH, Ehrenreich, P, Baumer, S, Henne, A, Liesegang, H, Merkl, R, Ehrenreich, A, Gottschalk, G (2004) The complete genome sequence of Bacillus licheniformis DSM13, an organism with great industrial potential. J Mol Microbiol Biotechnol 7: 204–211

    Article  PubMed  CAS  Google Scholar 

  38. Zhang, YC, Ronimus, RS, Turner, N, Zhang, Y, Morgan, HW (2002) Enumeration of thermophilic Bacillus species in composts and identification with a Random Amplification Polymorphic DNA (RAPD) protocol. Syst Appl Microbiol 25: 618–626

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiow-Her Chiou.

Additional information

The first two authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, CM., Shyu, CL., Ho, SP. et al. Species Diversity and Substrate Utilization Patterns of Thermophilic Bacterial Communities in Hot Aerobic Poultry and Cattle Manure Composts. Microb Ecol 54, 1–9 (2007). https://doi.org/10.1007/s00248-006-9139-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-006-9139-4

Keywords

Navigation