Skip to main content
Log in

Control Region Length Dynamics Potentially Drives Amino Acid Evolution in Tarsier Mitochondrial Genomes

  • Original Article
  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Patterns and processes of molecular evolution critically influence inferences in phylogeny and phylogeography. Within primates, a shift in evolutionary rates has been identified as the rationale for contrasting findings from mitochondrial and nuclear DNA studies as to the position of Tarsius. While the latter now seems settled, we sequenced complete mitochondrial genomes of three Sulawesi tarsiers (Tarsius dentatus, T. lariang, and T. wallacei) and analyzed substitution rates among tarsiers and other primates to infer driving processes of molecular evolution. We found substantial length polymorphism of the D-loop within tarsier individuals, but little variation of predominant lengths among them, regardless of species. Length variation was due to repetitive elements in the CSB domain—minisatellite motifs of 35 bp length and microsatellite motifs of 6 bp length. Amino acid evolutionary rates were second highest among major primate taxa relative to nucleotide substitution rates. We observed many radical possibly function-altering amino acid changes that were rarely driven by positive selection and thus potentially slightly deleterious or neutral. We hypothesize that the observed pattern of an increased amino acid evolutionary rate in tarsier mitochondrial genomes may be caused by hitchhiking of slightly deleterious mutations with favored D-loop length variants selected for maximizing replication success within the cell or the mitochondrion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adkins RM, Honeycutt RL, Disotell TR (1996) Evolution of eutherian cytochrome c oxidase subunit II: heterogeneous rates of protein evolution and altered interaction with cytochrome c. Mol Biol Evol 13:1393–1404

    Article  CAS  PubMed  Google Scholar 

  • Andrews TD, Easteal S (2000) Evolutionary rate acceleration of cytochrome c oxidase subunit I in simian primates. J Mol Evol 50:562–568

    CAS  PubMed  Google Scholar 

  • Andrews TD, Jermiin LS, Easteal S (1998) Accelerated evolution of cytochrome b in simian primates: adaptive evolution in concert with other mitochondrial proteins? J Mol Evol 47:249–257

    Article  CAS  PubMed  Google Scholar 

  • Arnason E, Rand DM (1992) Heteroplasmy of short tandem repeats in mitochondrial DNA of Atlantic cod, Gadusmorhua. Genetics 132:211–220

    PubMed Central  CAS  PubMed  Google Scholar 

  • Arnason U, Adegoke JA, Bodin K, Born EW, Esa YB et al (2002) Mammalian mitogenomic relationships and the root of the eutherian tree. Proc Natl Acad Sci USA 99:8151–8156

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bridle JR, Garn A-K, Monk KA, Butlin RK (2001) Speciation in Chitaura grasshoppers (Acrididae: Oxyinae) on the island of Sulawesi: colour patterns, morphology and contact zones. Biol J Linn Soc 72:373–390

    Article  Google Scholar 

  • Buroker NE, Brown JR, Gilbert TA, O’Hara PJ, Beckenbach AT et al (1990) Length heteroplasmy of sturgeon mitochondrial DNA: an illegitimate elongation model. Genetics 124:157–163

    PubMed Central  CAS  PubMed  Google Scholar 

  • Casane D, Dennebouy N, de Rochambeau H, Mounolou JC, Monnerot M (1997) Nonneutral evolution of tandem repeats in the mitochondrial DNA control region of lagomorphs. Mol Biol Evol 14:779–789

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee HJ, Ho SYW, Barnes I, Groves C (2009) Estimating the phylogeny and divergence times of primates using a super matrix approach. BMC Evol Biol 9:259

    Article  PubMed Central  PubMed  Google Scholar 

  • da Fonseca RR, Johnson WE, O’Brien SJ, Ramos MJ, Antunes A (2008) The adaptive evolution of the mammalian mitochondrial genome. BMC Genomics 9:119

    Article  PubMed Central  PubMed  Google Scholar 

  • Damuth J (1981) Population density and body size in mammals. Nature 290:699–700

    Article  Google Scholar 

  • Damuth J (1991) Of size and abundance. Nature 351:268–269

    Article  Google Scholar 

  • Drummond AJ, Ashton B, Buxton S, Cheung M, Cooper A, et al (2011) Geneious v5.4. http://www.geneious.com. Accessed 30 Dec 2013

  • Drummond AJ, Suchard MA, Xie D, Rambaut A (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol 29:1969–1973

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Efstratiadis A, Posakony JW, Maniatis T, Lawn RM, O’Connell C et al (1980) The structure and evolution of the human β-globin gene family. Cell 21:653–668

    Article  CAS  PubMed  Google Scholar 

  • Eizirik E, Murphy WJ, O’Brien SJ (2001) Molecular dating and biogeography of the early placental mammal radiation. J Hered 92:212–219

    Article  CAS  PubMed  Google Scholar 

  • Evans BJ, Brown RM, McGuire JA, Supriatna J, Andayani N et al (2003a) Phylogenetics of fanged frogs: testing biogeographical hypotheses at the interface of the Asian and Australian faunal zones. Syst Biol 52:794–819

    PubMed  Google Scholar 

  • Evans BJ, Supriatna J, Andayani N, Melnick DJ (2003b) Diversification of Sulawesi macaque monkeys: decoupled evolution of mitochondrial and autosomal DNA. Evolution 57:1931–1946

    Article  PubMed  Google Scholar 

  • Evans BJ, Supriatna J, Andayani N, Setiadi MI, Cannatella DC et al (2003c) Monkeys and toads define areas of endemism on Sulawesi. Evolution 57:1436–1443

    Article  PubMed  Google Scholar 

  • Faber JE, Stepien CA (1998) Tandemly repeated sequences in the mitochondrial DNA control region and phylogeography of the Pike-Perches Stizostedion. Mol Phylogenet Evol 10:310–322

    Article  CAS  PubMed  Google Scholar 

  • Fabre PH, Rodrigues A, Douzery EJP (2009) Patterns of macroevolution among Primates inferred from a supermatrix of mitochondrial and nuclear DNA. Mol Phylogenet Evol 53:808–825

    Article  CAS  PubMed  Google Scholar 

  • Fumagalli L, Taberlet P, Favre L, Hausser J (1996) Origin and evolution of homologous repeated sequences in the mitochondrial DNA control region of shrews. Mol Biol Evol 13:31–46

    Article  CAS  PubMed  Google Scholar 

  • Ghivizzani SC, Mackay SL, Madsen CS, Laipis PJ, Hauswirth WW (1993) Transcribed heteroplasmic repeated sequences in the porcine mitochondrial DNA D-loop region. J Mol Evol 37:36–47

    Article  CAS  PubMed  Google Scholar 

  • Goodman M, Porter CA, Czelusniak J, Page SL, Schneider H et al (1998) Toward a phylogenetic classification of primates based on DNA evidence complemented by fossil evidence. Mol Phylogenet Evol 9:585–598

    Article  CAS  PubMed  Google Scholar 

  • Grant JR, Stothard P (2008) The CGView Server: a comparative genomics tool for circular genomes. Nucleic Acids Res 36:W181–W184

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Groves C, Shekelle M (2010) The genera and species of Tarsiidae. Int J Primatol 31:1071–1082

    Article  Google Scholar 

  • Hall R (2001) Cenozoic reconstructions of SE Asia and the SW Pacific: changing patterns of land and sea. In: Metcalfe I, Smith JMB, Morwood M, Davidson I (eds) Faunal and floral migrations and evolution in SE Asia-Australasia. A.A. Balkema, Lisse, pp 35–56

    Google Scholar 

  • Hartig G, Churakov G, Warren WC, Brosius J, Makałowski W, Schmitz J (2013) Retrophylogenomics place tarsiers on the evolutionary branch of anthropoids. Sci Rep 3:1756

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hasegawa M, Kishino H, Hayasaka K, Horai S (1990) Mitochondrial DNA evolution in primates: transition rate has been extremely low in the lemur. J Mol Evol 31:113–121

    Article  CAS  PubMed  Google Scholar 

  • Hayasaka K, Gojobori T, Horai S (1988) Molecular phylogeny and evolution of primate mitochondrial DNA. Mol Biol Evol 5:626–644

    CAS  PubMed  Google Scholar 

  • Hoelzel AR, Lopez JV, Dover GA, O’Brien SJ (1994) Rapid evolution of a heteroplasmic repetitive sequence in the mitochondrial DNA control region of carnivores. J Mol Evol 39:191–199

    CAS  PubMed  Google Scholar 

  • Inoue JG, Miya M, Tsukamoto K, Nishida M (2001) Complete mitochondrial DNA sequence of Conger myriaster (Teleostei: Anguilliformes): novel gene order for vertebrate mitochondrial genomes and the phylogenetic implications for anguilliform families. J Mol Evol 52:311–320

    CAS  PubMed  Google Scholar 

  • Jameson NM, Hou Z-C, Sterner KN, Weckle A, Goodman M et al (2011) Genomic data reject the hypothesis of a prosimian primate clade. J Hum Evol 61:295–305

    Article  PubMed  Google Scholar 

  • Levinson G, Gutman GA (1987) Slipped-strand mispairing: a major mechanism for DNA sequence evolution. Mol Biol Evol 4:203–221

    CAS  PubMed  Google Scholar 

  • Lohman DJ, de Bruyn M, Page T, von Rintelen K, Hall R et al (2011) Biogeography of the Indo-Australian Archipelago. Annu Rev Ecol Evol Syst 42:205–226

    Article  Google Scholar 

  • Matsui A, Rakotondraparany F, Munechika I, Hasegawa M, Horai S (2009) Molecular phylogeny and evolution of prosimians based on complete sequences of mitochondrial DNAs. Gene 441:53–66

    Article  CAS  PubMed  Google Scholar 

  • Melin AD, Matsushita Y, Moritz GL, Dominy NJ, Kawamura S (2013) Inferred L/M cone opsin polymorphism of ancestral tarsiers sheds dim light on the origin of anthropoid primates. Proc R Soc Lond B Biol Sci 280:20130189

    Article  Google Scholar 

  • Mercer JM, Roth VL (2003) The effects of Cenozoic global change on squirrel phylogeny. Science 299:1568–1572

    Article  CAS  PubMed  Google Scholar 

  • Meredith RW, Janečka JE, Gatesy J, Ryder OA, Fisher CA et al (2011) Impacts of the Cretaceous Terrestrial Revolution and KPg extinction on mammal diversification. Science 334:521–524

    Article  CAS  PubMed  Google Scholar 

  • Merker S (2006) Habitat-specific ranging patterns of Dian’s tarsiers (Tarsius dianae) as revealed by radiotracking. Am J Primatol 68:111–125

    Article  PubMed  Google Scholar 

  • Merker S, Groves CP (2006) Tarsius lariang: a new primate species from Western Central Sulawesi. Int J Primatol 27:465–485

    Article  Google Scholar 

  • Merker S, Driller C, Perwitasari-Farajallah D, Pamungkas J, Zischler H (2009) Elucidating geological and biological processes underlying the diversification of Sulawesi tarsiers. Proc Natl Acad Sci USA 106:8459–8464

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Merker S, Driller C, Dahruddin H, Wirdateti, Sinaga W et al (2010) Tarsius wallacei: a new tarsier species from central Sulawesi occupies a discontinuous range. Int J Primatol 31:1107–1122

  • Mignotte F, Gueride M, Champagne AM, Mounolou JC (1990) Direct repeats in the non-coding region of rabbit mitochondrial DNA. Involvement in the generation of intra- and inter-individual heterogeneity. Eur J Biochem 194:561–571

    Article  CAS  PubMed  Google Scholar 

  • Murphy WJ, Eizirik E, Johnson WE, Zhang YP, Ryder OA et al (2001) Molecular phylogenetics and the origins of placental mammals. Nature 409:614–618

    Article  CAS  PubMed  Google Scholar 

  • Ohta T (1973) Slightly deleterious mutant substitutions in evolution. Nature 246:96–98

    Article  CAS  PubMed  Google Scholar 

  • Page SL, Goodman M (2001) Catarrhine phylogeny: noncoding DNA evidence for a diphyletic origin of the mangabeys and for a human-chimpanzee clade. Mol Phylogenet Evol 18:14–25

    Article  CAS  PubMed  Google Scholar 

  • Pereira F, Soares P, Carneiro J, Pereira L, Richards MB et al (2008) Evidence for variable selective pressures at a large secondary structure of the human mitochondrial DNA control region. Mol Biol Evol 25:2759–2770

    Article  CAS  PubMed  Google Scholar 

  • Perelman P, Johnson WE, Roos C, Seuánez HN, Horvath JE et al (2011) A molecular phylogeny of living primates. PLoS Genet 7:e1001342

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pfenninger M, Bugert M (2001) Dynamic microsatellites in transcribed regions of gastropod mitochondrial 16S rDNA. Genome 44:163–166

    Article  CAS  PubMed  Google Scholar 

  • Popadin K, Polishchuk LV, Mamirova L, Knorre D, Gunbin K (2007) Accumulation of slightly deleterious mutations in mitochondrial protein-coding genes of large versus small mammals. Proc Natl Acad Sci USA 104:13390–13395

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Popadin KY, Nikolaev SI, Junier T, Baranova M, Antonarakis SE (2013) Purifying selection in mammalian mitochondrial protein-coding genes is highly effective and congruent with evolution of nuclear genes. Mol Biol Evol 30:347–355

    Article  CAS  PubMed  Google Scholar 

  • Poux C, Douzery EJP (2004) Primate phylogeny, evolutionary rate variations, and divergence times: a contribution from the nuclear gene IRBP. Am J Phys Anthropol 124:1–16

    Article  PubMed  Google Scholar 

  • Rand DM (1993) Endotherms, ectotherms, and mitochondrial genome-size variation. J Mol Evol 37:281–295

    Article  CAS  PubMed  Google Scholar 

  • Rand DM (2001) The units of selection on mitochondrial DNA. Annu Rev Ecol Syst 32:415–448

    Article  Google Scholar 

  • Rand DM, Harrison RG (1989) Molecular population genetics of mtDNA size variation in crickets. Genetics 121:551–569

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rayko E, Goursot R, Cherif-Zahar B, Melis R, Bernardi G (1988) Regions flanking ori sequences affect the replication efficiency of the mitochondrial genome of ori+ petite mutants from yeast. Gene 63:213–226

    Article  CAS  PubMed  Google Scholar 

  • Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana Press, Totowa, pp 365–386

    Google Scholar 

  • Saccone C, Pesole G, Sbisá E (1991) The main regulatory region of mammalian mitochondrial DNA: structure–function model and evolutionary pattern. J Mol Evol 33:83–91

    Article  CAS  PubMed  Google Scholar 

  • Sbisà E, Tanzariello F, Reyes A, Pesole G, Saccone C (1997) Mammalian mitochondrial D-loop region structural analysis: identification of new conserved sequences and their functional and evolutionary implications. Gene 205:125–140

    Article  PubMed  Google Scholar 

  • Schattner P, Brooks AN, Lowe TM (2005) The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs. Nucleic Acids Res 33:W686–W689

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schmitz J, Ohme M, Zischler H (2001) SINE insertions in cladistic analyses and the phylogenetic affiliations of Tarsius bancanus to other primates. Genetics 157:777–784

    PubMed Central  CAS  PubMed  Google Scholar 

  • Schmitz J, Ohme M, Zischler H (2002) The complete mitochondrial sequence of Tarsius bancanus: evidence for an extensive nucleotide compositional plasticity of primate mitochondrial DNA. Mol Biol Evol 19:544–553

    Article  CAS  PubMed  Google Scholar 

  • Shekelle M, Leksono SM (2004) Strategi konservasi di Pulau Sulawesi dengan menggunakan Tarsius sebagai flagship species [Conservation strategy in Sulawesi Island using Tarsius as flagship species]. Biota 9:1–10

    Google Scholar 

  • Shekelle M, Groves C, Merker S, Supriatna J (2008a) Tarsius tumpara: a new tarsier species from Siau Island, North Sulawesi. Primate Conserv 23:55–64

    Article  Google Scholar 

  • Shekelle M, Morales JC, Niemitz C, Ichwan LL, Melnick D (2008b) Distribution of tarsier haplotypes for some parts of northern and central Sulawesi. In: Shekelle M, Maryanto I, Groves C, Schulze H, Fitch-Snyder H (eds) Primates of the oriental night. LIPI Press, Jakarta, pp 51–69

    Google Scholar 

  • Shekelle M, Meier R, Wahyu I, Ting N (2010) Molecular phylogenetics and chronometrics of Tarsiidae based on 12S mtDNA haplotypes: evidence for Miocene origins of crown tarsiers and numerous species within the Sulawesian clade. Int J Primatol 31:1083–1106

    Article  Google Scholar 

  • Springer MS, Meredith RW, Gatesy J, Emerling CA, Park J et al (2012) Macroevolutionary dynamics and historical biogeography of primate diversification inferred from a species supermatrix. PLoS One 7:e49521

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wai T, Teoli D, Shoubridge EA (2008) The mitochondrial DNA genetic bottleneck results from replication of a subpopulation of genomes. Nat Genet 40:1484–1488

    Article  CAS  PubMed  Google Scholar 

  • Werle E, Schneider C, Renner M, Völker M, Fiehn W (1994) Convenient single-step, one tube purification of PCR products for direct sequencing. Nucleic Acids Res 22:4354–4355

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • White EP, Morgan Ernest SK, Kerkhoff AJ, Enquist BJ (2007) Relationships between body size and abundance in ecology. Trends Ecol Evol 22:323–330

    Article  PubMed  Google Scholar 

  • Wilkinson GS, Chapman AM (1991) Length and sequence variation in evening bat D-loop mtDNA. Genetics 128:607–617

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wilkinson GS, Mayer F, Kerth G, Petri B (1997) Evolution of repeated sequence arrays in the D-loop region of bat mitochondrial DNA. Genetics 146:1035–1048

    PubMed Central  CAS  PubMed  Google Scholar 

  • Woolley S, Johnson J, Smith MJ, Crandall KA, McClellan DA (2003) TreeSAAP: selection on amino acid properties using phylogenetic trees. Bioinformatics 19:671–672

    Article  CAS  PubMed  Google Scholar 

  • Wu PC, Chen JB, Kawamura S, Roos C, Merker S et al (2012) The IgE gene in primates exhibits extraordinary evolutionary diversity. Immunogenetics 64:279–287

    Article  CAS  PubMed  Google Scholar 

  • Yang Z (2007) PAML 4: a program package for phylogenetic analysis by maximum likelihood. Mol Biol Evol 24:1586–1591

    Article  CAS  PubMed  Google Scholar 

  • Zietkiewicz E, Richer C, Labuda D (1999) Phylogenetic affinities of tarsier in the context of primate Alu repeats. Mol Phylogenet Evol 11:77–83

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the Indonesian authorities LIPI, RISTEK, PHKA, and BKSDA for granting research, capture, and export permits and the Primate Research Center at Bogor Agricultural University for providing administrative support. Nicolas Galtier and an anonymous reviewer provided valuable comments on an earlier draft of the manuscript. Sample collection, molecular analyses, and manuscript submission were supported through research grants from the Deutsche Forschungsgemeinschaft (DFG, Me2730/1-2, Me2730/1-3, and Me2730/2-1); the molecular work was partly supported by the research-funding program “LOEWE—Landes-Offensive zur Entwicklung Wissenschaftlich-ökonomischer Exzellenz” of Hesse’s Ministry of Higher Education, Research, and the Arts.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Merker.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Merker, S., Thomas, S., Völker, E. et al. Control Region Length Dynamics Potentially Drives Amino Acid Evolution in Tarsier Mitochondrial Genomes. J Mol Evol 79, 40–51 (2014). https://doi.org/10.1007/s00239-014-9631-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-014-9631-2

Keywords

Navigation