Skip to main content
Log in

Probing the Interaction Between KCNE2 and KCNQ1 in Their Transmembrane Regions

  • Published:
Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

KCNE1-KCNE5 are single membrane-spanning proteins that associate with voltage-gated potassium channels to diversify their function. Other than the KCNQ1/KCNE1 complex, little is known about how KCNE proteins work. We focus on KCNE2, which associates with KCNQ1 to form K channels critical for gastric acid secretion in parietal cells. We use cysteine (Cys)-scanning mutagenesis to probe the functional role of residues along the KCNE2 transmembrane domain (TMD) in modulating KCNQ1 function. There is an α-helical periodicity in how Cys substitutions along the KCNE2 TMD perturb KCNQ1 pore conductance/ion selectivity. However, positions where Cys substitutions perturb KCNQ1 gating kinetics cluster to the extracellular end and cytoplasmic half of the KCNE2 TMD. This is the first systematic perturbation analysis of a KCNE TMD. We propose that the KCNE2 TMD adopts an α-helical secondary structure with one face making intimate contact with the KCNQ1 pore domain, while the contacts with the KCNQ1 voltage-sensing domain appear more dynamic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abbott GW, Goldstein SAN (1998) A superfamily of small potassium channel subunits: form and function of the MinK-related peptides (MiRPs). Q Rev Biophys 31:357–398

    Article  PubMed  CAS  Google Scholar 

  • Abbott GW, Goldstein SAN (2002) Disease-associated mutations in KCNE potassium channel subunits (MiRPs) reveal promiscuous disruption of multiple currents and conservation of mechanism. FASEB J 16:390–400

    Article  PubMed  CAS  Google Scholar 

  • Aggeli A, Bannister ML, Bell M, Boden N, Findlay JBC, Hunter M, Knowles PF, Yang J-C (1998) Conformation and ion-channeling activity of a 27-residue peptide modeled on the single-transmembrane segment of the IsK (minK) protein. Biochemistry 37:8121–8131

    Article  PubMed  CAS  Google Scholar 

  • Bendahhou S, Marionneau C, Haurogne K, Larroque M-M, Derand R, Szuts V, Escande D, Demolombe S, Barhanin J (2005) In vitro molecular interactions and distribution of KCNE family with KCNQ1 in the human heart. Cardiovasc Res 67:529–538

    Article  PubMed  CAS  Google Scholar 

  • Chandrasekhar KD, Bas T, Kobertz WR (2006) KCNE1 subunits require co-assembly with K+ channels for efficient trafficking and cell surface expression. J Biol Chem 281:40015–40023

    Article  PubMed  CAS  Google Scholar 

  • Chen Y-H, Xu S-J, Bendahhou S, Wang X-L, Wang Y, Xu W-Y, Jin H-W, Sun H, Su X-Y, Zhuang Q-N, Yang Y-Q, Li Y-B, Liu Y, Xu H-J, Li X-F, Ma N, Mou C-P, Chen Z, Barhanin J, Huang W (2003) KCNQ1 gain-of-function mutation in familial atrial fibrillation. Science 299:251–254

    Article  PubMed  CAS  Google Scholar 

  • Franqueza L, Lin M, Shen J, Keating MT, Sanguinetti MC (1999) Long QT syndrome-associated mutations in the S4-S5 linker of KvLQT1 potassium channels modify gating and interaction with minK subunits. J Biol Chem 274:21063–21070

    Article  PubMed  CAS  Google Scholar 

  • Goldstein SAN, Miller C (1991) Site-specific mutations in a minimal voltage-dependent K+ channel alter ion selectivity and open-channel block. Neuron 7:403–408

    Article  PubMed  CAS  Google Scholar 

  • Hong K, Piper DR, Diaz-Valdecantos A, Brugada J, Oliva A, Burashnikov E, Santos-de-Soto J, Grueso-Montero J, Diaz-Enfante E, Brugada P, Saches F, Sanguinetti MC, Brugada R (2005) De novo KCNQ1 mutation responsible for atrial fibrillation and short QT syndrome in utero. Cardiovasc Res 68:433–440

    Article  PubMed  CAS  Google Scholar 

  • Isbrandt D, Friederich P, Solth A, Haverkamp W, Ebneth A, Borggrefe M, Funke H, Sauter K, Breithardt G, Pongs O, Schulze-Bahr E (2002) Identification and functional characterization of a novel KCNE2 (MiRP1) mutation that alters HERG channel kinetics. J Mol Med 80:524–532

    Article  PubMed  CAS  Google Scholar 

  • LeMasurier M, Heginbotham L, Miller C (2001) KcsA: it’s a potassium channel. J Gen Physiol 118:303–313

    Article  PubMed  CAS  Google Scholar 

  • Lerche C, Seebohm G, Wagner C, Scherer CR, Dehmelt L, Abitbol I, Gerlach U, Brendel J, Attali B, Busch AE (2000) Molecular impact of minK on the enantiospecific block of I Ks by chromanols. Br J Pharmacol 131:1503–1506

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Zhang M, Jiang M, Tseng G-N (2002) Structural and functional role of the extracellular S5-P linker in the HERG potassium channel. J Gen Physiol 120:723–737

    Article  PubMed  CAS  Google Scholar 

  • Long SB, Campbell EB, MacKinnon R (2005) Voltage sensor of Kv1.2: structural basis of electromechanical coupling. Science 309:903–908

    Article  PubMed  CAS  Google Scholar 

  • Lu Z, Klem AM, Ramu Y (2002) Coupling between voltage sensors and activation gate in voltage-gated K+ channels. J Gen Physiol 120:663–676

    Article  PubMed  CAS  Google Scholar 

  • Melman YF, Demenech A, de la Luna S, McDonald TV (2001) Structural determinants of KvLQT1 control by the KCNE1 family of proteins. J Biol Chem 276:6439–6444

    Article  PubMed  CAS  Google Scholar 

  • Melman YF, Krumerman A, McDonald TV (2002) A single transmembrane site in the KCNE-encoded proteins controls the specificity of KvLQT1 channel gating. J Biol Chem 277:25187–25194

    Article  PubMed  CAS  Google Scholar 

  • Morais Cabral JH, Zhou Y, MacKinnon R (2001) Energetic optimization of ion conduction rate by the K+ selectivity filter. Nature 414:37–42

    Article  PubMed  CAS  Google Scholar 

  • Popot J-L, Engelman DM (2000) Helical membrane protein folding, stability, and evolution. Annu Rev Biochem 69:881–922

    Article  PubMed  CAS  Google Scholar 

  • Roepke TK, Anantharam A, Kirchhof P, Busque SM, Young JB, Geibel JP, Lerner DJ, Abbott GW (2006) The KCNE2 potassium channel ancillary subunit is essential for gastric acid secretion. J Biol Chem 281:23740–23747

    Article  PubMed  CAS  Google Scholar 

  • Sanguinetti MC, Curran ME, Zou A, Shen J, Spector PS, Atkinson DL, Keating MT (1996) Coassembly of KvLQT1 and minK (IsK) proteins to form cardiac I Ks potassium channel. Nature 384:80–83

    Article  PubMed  CAS  Google Scholar 

  • Schreibmayer W, Lester HA, Dascal N (1994) Voltage clamping of Xenopus laevis oocytes utilizing agarose-cushion electrodes. Pfluegers Archiv 426:453–458

    Article  PubMed  CAS  Google Scholar 

  • Sesti F, Goldstein SAN (1998) Single-channel characteristics of wild-type I Ks channels and channels formed with two minK mutants that cause long QT syndrome. J Gen Physiol 112:651–663

    Article  PubMed  CAS  Google Scholar 

  • Tai KK, Goldstein SAN (1998) The conduction pore of a cardiac potassium channel. Nature 391:605–608

    Article  PubMed  CAS  Google Scholar 

  • Takumi T, Moriyoshi K, Aramori I, Ishii T, Oiki S, Okada Y, Ohkubo H, Nakanishi S (1991) Alteration of channel activities and gating by mutations of slow I SK potassium channel. J Biol Chem 266:22192–22198

    PubMed  CAS  Google Scholar 

  • Tapper AR, George AL Jr (2000) MinK subdomains that mediate modulation of and association with KvLQT1. J Gen Physiol 116:379–390

    Article  PubMed  CAS  Google Scholar 

  • Tapper AR, George AL Jr (2001) Location and orientation of minK within the I Ks potassium channel complex. J Biol Chem 276:38249–38254

    PubMed  CAS  Google Scholar 

  • Teng S, Ma L, Zhen Y, Lin C-X, Bahring R, Vardanyan V, Pongs O, Hui R (2003) Novel gene hKCNE4 slows the activation of the KCNQ1 channel. Biochem Biophys Res Commun 303:808–813

    Article  PubMed  CAS  Google Scholar 

  • Wang K-W, Tai KK, Goldstein SAN (1996) MinK residues line a potassium channel pore. Neuron 16:571–577

    Article  PubMed  CAS  Google Scholar 

  • Wilson GG, Sivaprasadarao A, Findlay JBC, Wray D (1994) Changes in activation gating of I sK potassium currents brought about by mutations in the transmembrane sequence. FEBS Lett 353:251–254

    Article  PubMed  CAS  Google Scholar 

  • Wu D-M, Jiang M, Zhang M, Liu X-S, Korolkova YV, Tseng G-N (2006a) KCNE2 is colocalized with KCNQ1 and KCNE1 in cardiac myocytes and may function as a negative modulator of I Ks current amplitude in the heart. Heart Rhythm 3:1469–1480

    Article  PubMed  Google Scholar 

  • Wu D-M, Lai L-P, Zhang M, Wang H-L, Jiang M, Liu X-S, Tseng G-N (2006b) Characterization of an LQT5-related mutation in KCNE1, Y81C: implications for a role of KCNE1 cytoplasmic domain in I Ks channel function. Heart Rhythm 3:1031–1040

    Article  PubMed  Google Scholar 

  • Zhang M, Jiang M, Tseng G-N (2001) MinK-related peptide 1 associates with Kv4.2 and modulates its gating function. A potential role as ß subunit of cardiac transient outward channel. Circ Res 88:1012–1019

    CAS  Google Scholar 

  • Zhang M, Liu J, Jiang M, Wu DM, Sonawane K, Guy HR, Tseng G-N (2005) Interactions between charged residues in the transmembrane segments of voltage-sensing domain of the hERG channel. J Membr Biol 207:169–181

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by HL 67840 and HL 46451 from National Heart, Lung and Blood Institute of the National Institutes of Health (to G. N. T.) and a grant-in-aid award from American Heart Association/Mid-Atlantic Affiliate (to M. Z.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gea-Ny Tseng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, XS., Zhang, M., Jiang, M. et al. Probing the Interaction Between KCNE2 and KCNQ1 in Their Transmembrane Regions. J Membrane Biol 216, 117–127 (2007). https://doi.org/10.1007/s00232-007-9047-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-007-9047-7

Keywords

Navigation