Skip to main content

Advertisement

Log in

The Role of GH/IGF-I-Mediated Mechanisms in Sex Differences in Cortical Bone Size in Mice

  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Cortical bone dimensions are important determinants of bone strength. Gender differences in cortical bone size caused by greater periosteal expansion in males than in females during the pubertal growth spurt are well established both in humans and in experimental animal models. However, the mechanism by which gender influences cortical bone size is still a matter of investigation. The role of androgens and estrogen in pubertal bone growth has been examined in human disorders as well as animal models, such as gonadectomized or sex steroid receptor knockout mice. Based on the findings that growth hormone (GH) and insulin-like growth factor I (IGF-I) are major regulators of postnatal skeletal growth, we and others have predicted that sex hormones interact with the GH/IGF-I axis to regulate cortical bone size. However, studies conflict as to whether estrogen and androgens impact cortical bone size through the canonical pathway, through GH without IGF-I mediation, through IGF-I without GH stimulation, or independent of GH/IGF-I. We review recent data on the impact of sex steroids and components of the GH/IGF axis on sexual dimorphism in bone size. While the GH/IGF-I axis is a major player in regulating peak bone size, the relative contribution of GH/IGF-dependent mechanisms to sex differences in cortical bone size remains to be established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Turner CH (2006) Bone strength: current concepts. Ann N Y Acad Sci 1068:429–446

    Article  PubMed  Google Scholar 

  2. Bouxsein ML, Karasik D (2006) Bone geometry and skeletal fragility. Curr Osteoporos Rep 4:49–56

    Article  PubMed  Google Scholar 

  3. Seeman E (2009) Bone modeling and remodeling. Crit Rev Eukaryot Gene Expr 19:219–233

    CAS  PubMed  Google Scholar 

  4. Seeman E (2001) Clinical review 137. Sexual dimorphism in skeletal size, density, and strength. J Clin Endocrinol Metab 86:4576–4584

    Article  CAS  PubMed  Google Scholar 

  5. Bachrach LK (2008) Skeletal development in childhood and adolescence. In: Rosen CJ (ed) Primer on the metabolic bone diseases and disorders of mineral metabolism. American Society for Bone and Mineral Research, Washington, DC, pp 74–79

    Chapter  Google Scholar 

  6. Christoforidis A, Maniadaki I, Stanhope R (2005) Growth hormone/insulin-like growth factor-1 axis during puberty. Pediatr Endocrinol Rev 3:5–10

    PubMed  Google Scholar 

  7. Riggs BL, Khosla S, Melton LJ 3rd (2002) Sex steroids and the construction and conservation of the adult skeleton. Endocr Rev 23:279–302

    Article  CAS  PubMed  Google Scholar 

  8. Mauras N (2001) Growth hormone and sex steroids. Interactions in puberty. Endocrinol Metab Clin North Am 30:529–544

    Article  CAS  PubMed  Google Scholar 

  9. Clark PA, Rogol AD (1996) Growth hormones and sex steroid interactions at puberty. Endocrinol Metab Clin North Am 25:665–681

    Article  CAS  PubMed  Google Scholar 

  10. Metzger DL, Kerrigan JR, Rogol AD (1994) Gonadal steroid hormone regulation of the somatotropic axis during puberty in humans: mechanisms of androgen and estrogen action. Trends Endocrinol Metab 5:290–296

    Article  CAS  PubMed  Google Scholar 

  11. Bautista CM, Mohan S, Baylink DJ (1990) Insulin-like growth factors I and II are present in the skeletal tissues of ten vertebrates. Metabolism 39:96–100

    Article  CAS  PubMed  Google Scholar 

  12. Zhang XZ, Kalu DN, Erbas B, Hopper JL, Seeman E (1999) The effects of gonadectomy on bone size, mass, and volumetric density in growing rats are gender-, site-, and growth hormone-specific. J Bone Miner Res 14:802–809

    Article  CAS  PubMed  Google Scholar 

  13. Bikle D, Majumdar S, Laib A, Powell-Braxton L, Rosen C, Beamer W, Nauman E, Leary C, Halloran B (2001) The skeletal structure of insulin-like growth factor I–deficient mice. J Bone Miner Res 16:2320–2329

    Article  CAS  PubMed  Google Scholar 

  14. Govoni KE, Wergedal JE, Florin L, Angel P, Baylink DJ, Mohan S (2007) Conditional deletion of insulin-like growth factor-I in collagen type 1alpha2-expressing cells results in postnatal lethality and a dramatic reduction in bone accretion. Endocrinology 148:5706–5715

    Article  CAS  PubMed  Google Scholar 

  15. Mohan S, Richman C, Guo R, Amaar Y, Donahue LR, Wergedal J, Baylink DJ (2003) Insulin-like growth factor regulates peak bone mineral density in mice by both growth hormone-dependent and -independent mechanisms. Endocrinology 144:929–936

    Article  CAS  PubMed  Google Scholar 

  16. Ohlsson C, Mohan S, Sjogren K, Tivesten A, Isgaard J, Isaksson O, Jansson JO, Svensson J (2009) The role of liver-derived insulin-like growth factor-I. Endocr Rev 30:494–535

    Article  CAS  PubMed  Google Scholar 

  17. Govoni KE, Lee SK, Chung YS, Behringer RR, Wergedal JE, Baylink DJ, Mohan S (2007) Disruption of insulin-like growth factor-I expression in type IIalphaI collagen-expressing cells reduces bone length and width in mice. Physiol Genomics 30:354–362

    Article  CAS  PubMed  Google Scholar 

  18. Donahue LR, Beamer WG (1993) Growth hormone deficiency in “little” mice results in aberrant body composition, reduced insulin-like growth factor-I and insulin-like growth factor-binding protein-3 (IGFBP-3), but does not affect IGFBP-2, -1 or -4. J Endocrinol 136:91–104

    Article  CAS  PubMed  Google Scholar 

  19. Liu JP, Baker J, Perkins AS, Robertson EJ, Efstratiadis A (1993) Mice carrying null mutations of the genes encoding insulin-like growth factor I (Igf-1) and type 1 IGF receptor (Igf1r). Cell 75:59–72

    CAS  PubMed  Google Scholar 

  20. DeChiara TM, Efstratiadis A, Robertson EJ (1990) A growth-deficiency phenotype in heterozygous mice carrying an insulin-like growth factor II gene disrupted by targeting. Nature 345:78–80

    Article  CAS  PubMed  Google Scholar 

  21. Mohan S, Govoni K, Wergedal J (2008) Is growth hormone/IGF-I mediated mechanism involved in regulating gender differences in bone size? In: Proceedings of the American society for bone and mineral research 30th annual meeting, September 12–16, 2008, Montreal, Canada

  22. Kim BT, Mosekilde L, Duan Y, Zhang XZ, Tornvig L, Thomsen JS, Seeman E (2003) The structural and hormonal basis of sex differences in peak appendicular bone strength in rats. J Bone Miner Res 18:150–155

    Article  CAS  PubMed  Google Scholar 

  23. Venken K, De Gendt K, Boonen S, Ophoff J, Bouillon R, Swinnen JV, Verhoeven G, Vanderschueren D (2006) Relative impact of androgen and estrogen receptor activation in the effects of androgens on trabecular and cortical bone in growing male mice: a study in the androgen receptor knockout mouse model. J Bone Miner Res 21:576–585

    Article  CAS  PubMed  Google Scholar 

  24. Callewaert F, Venken K, Kopchick JJ, Torcasio A, van Lenthe GH, Boonen S, Vanderschueren D (2010) Sexual dimorphism in cortical bone size and strength but not density is determined by independent and time-specific actions of sex steroids and IGF-1: evidence from pubertal mouse models. J Bone Miner Res 25:617–626

    Article  CAS  PubMed  Google Scholar 

  25. Govoni KE, Wergedal JE, Chadwick RB, Srivastava AK, Mohan S (2008) Prepubertal OVX increases IGF-I expression and bone accretion in C57BL/6J mice. Am J Physiol Endocrinol Metab 295:E1172–E1180

    Article  CAS  PubMed  Google Scholar 

  26. Turner RT, Wakley GK, Hannon KS (1990) Differential effects of androgens on cortical bone histomorphometry in gonadectomized male and female rats. J Orthop Res 8:612–617

    Article  CAS  PubMed  Google Scholar 

  27. Frank GR (2003) Role of estrogen and androgen in pubertal skeletal physiology. Med Pediatr Oncol 41:217–221

    Article  PubMed  Google Scholar 

  28. Juul A (2001) The effects of oestrogens on linear bone growth. Hum Reprod Update 7:303–313

    Article  CAS  PubMed  Google Scholar 

  29. Meinhardt UJ, Ho KK (2006) Modulation of growth hormone action by sex steroids. Clin Endocrinol (Oxf) 65:413–422

    Article  CAS  Google Scholar 

  30. Styne DM (2003) The regulation of pubertal growth. Horm Res 60:22–26

    Article  CAS  PubMed  Google Scholar 

  31. Cutler GB Jr (1997) The role of estrogen in bone growth and maturation during childhood and adolescence. J Steroid Biochem Mol Biol 61:141–144

    Article  CAS  PubMed  Google Scholar 

  32. Vanderschueren D, Venken K, Ophoff J, Bouillon R, Boonen S (2006) Clinical review. Sex steroids and the periosteum—reconsidering the roles of androgens and estrogens in periosteal expansion. J Clin Endocrinol Metab 91:378–382

    Article  CAS  PubMed  Google Scholar 

  33. Vanderschueren D, van Herck E, Nijs J, Ederveen AG, De Coster R, Bouillon R (1997) Aromatase inhibition impairs skeletal modeling and decreases bone mineral density in growing male rats. Endocrinology 138:2301–2307

    Article  CAS  PubMed  Google Scholar 

  34. Sjogren K, Lagerquist M, Moverare-Skrtic S, Andersson N, Windahl SH, Swanson C, Mohan S, Poutanen M, Ohlsson C (2009) Elevated aromatase expression in osteoblasts leads to increased bone mass without systemic adverse effects. J Bone Miner Res 24:1263–1270

    Article  PubMed  Google Scholar 

  35. Fritton JC, Emerton KB, Sun H, Kawashima Y, Mejia W, Wu Y, Rosen CJ, Panus D, Bouxsein M, Majeska RJ, Schaffler MB, Yakar S (2010) Growth hormone protects against ovariectomy-induced bone loss in states of low circulating insulin-like growth factor (IGF-1). J Bone Miner Res 25:235–246

    Article  CAS  PubMed  Google Scholar 

  36. Perrien DS, Akel NS, Edwards PK, Carver AA, Bendre MS, Swain FL, Skinner RA, Hogue WR, Nicks KM, Pierson TM, Suva LJ, Gaddy D (2007) Inhibin A is an endocrine stimulator of bone mass and strength. Endocrinology 148:1654–1665

    Article  CAS  PubMed  Google Scholar 

  37. Belgorosky A, Baquedano MS, Guercio G, Rivarola MA (2008) Adrenarche: postnatal adrenal zonation and hormonal and metabolic regulation. Horm Res 70:257–267

    Article  CAS  PubMed  Google Scholar 

  38. Remer T, Boye KR, Hartmann M, Neu CM, Schoenau E, Manz F, Wudy SA (2003) Adrenarche and bone modeling and remodeling at the proximal radius: weak androgens make stronger cortical bone in healthy children. J Bone Miner Res 18:1539–1546

    Article  PubMed  Google Scholar 

  39. Cutler GB Jr, Loriaux DL (1980) Andrenarche and its relationship to the onset of puberty. Fed Proc 39:2384–2390

    CAS  PubMed  Google Scholar 

  40. Labrie F, Cusan L, Gomez JL, Martel C, Berube R, Belanger P, Belanger A, Vandenput L, Mellstrom D, Ohlsson C (2009) Comparable amounts of sex steroids are made outside the gonads in men and women: strong lesson for hormone therapy of prostate and breast cancer. J Steroid Biochem Mol Biol 113:52–56

    Article  CAS  PubMed  Google Scholar 

  41. Pignatelli D, Xiao F, Gouveia AM, Ferreira JG, Vinson GP (2006) Adrenarche in the rat. J Endocrinol 191:301–308

    Article  CAS  PubMed  Google Scholar 

  42. Johnsen IK, Slawik M, Shapiro I, Hartmann MF, Wudy SA, Looyenga BD, Hammer GD, Reincke M, Beuschlein F (2006) Gonadectomy in mice of the inbred strain CE/J induces proliferation of sub-capsular adrenal cells expressing gonadal marker genes. J Endocrinol 190:47–57

    Article  CAS  PubMed  Google Scholar 

  43. Grunt JA (1964) Effects of adrenalectomy and gonadectomy on growth and development in the rat. Endocrinology 75:446–451

    Article  CAS  PubMed  Google Scholar 

  44. Simpson ER, Clyne C, Rubin G, Boon WC, Robertson K, Britt K, Speed C, Jones M (2002) Aromatase—a brief overview. Annu Rev Physiol 64:93–127

    Article  CAS  PubMed  Google Scholar 

  45. Zhao H, Innes J, Brooks DC, Reierstad S, Yilmaz MB, Lin Z, Bulun SE (2009) A novel promoter controls Cyp19a1 gene expression in mouse adipose tissue. Reprod Biol Endocrinol 7:37

    Article  PubMed  Google Scholar 

  46. Lindberg MK, Alatalo SL, Halleen JM, Mohan S, Gustafsson JA, Ohlsson C (2001) Estrogen receptor specificity in the regulation of the skeleton in female mice. J Endocrinol 171:229–236

    Article  CAS  PubMed  Google Scholar 

  47. Vidal O, Lindberg MK, Hollberg K, Baylink DJ, Andersson G, Lubahn DB, Mohan S, Gustafsson JA, Ohlsson C (2000) Estrogen receptor specificity in the regulation of skeletal growth and maturation in male mice. Proc Natl Acad Sci USA 97:5474–5479

    Article  CAS  PubMed  Google Scholar 

  48. Windahl SH, Vidal O, Andersson G, Gustafsson JA, Ohlsson C (1999) Increased cortical bone mineral content but unchanged trabecular bone mineral density in female ERbeta(−/−) mice. J Clin Invest 104:895–901

    Article  CAS  PubMed  Google Scholar 

  49. Vandenput L, Ederveen AG, Erben RG, Stahr K, Swinnen JV, Van Herck E, Verstuyf A, Boonen S, Bouillon R, Vanderschueren D (2001) Testosterone prevents orchidectomy-induced bone loss in estrogen receptor-alpha knockout mice. Biochem Biophys Res Commun 285:70–76

    Article  CAS  PubMed  Google Scholar 

  50. Callewaert F, Venken K, Ophoff J, De Gendt K, Torcasio A, van Lenthe GH, Van Oosterwyck H, Boonen S, Bouillon R, Verhoeven G, Vanderschueren D (2009) Differential regulation of bone and body composition in male mice with combined inactivation of androgen and estrogen receptor-alpha. FASEB J 23:232–240

    Article  CAS  PubMed  Google Scholar 

  51. Kousteni S, Bellido T, Plotkin LI, O’Brien CA, Bodenner DL, Han L, Han K, DiGregorio GB, Katzenellenbogen JA, Katzenellenbogen BS, Roberson PK, Weinstein RS, Jilka RL, Manolagas SC (2001) Nongenotropic, sex-nonspecific signaling through the estrogen or androgen receptors: dissociation from transcriptional activity. Cell 104:719–730

    CAS  PubMed  Google Scholar 

  52. Voide R, van Lenthe GH, Muller R (2008) Bone morphometry strongly predicts cortical bone stiffness and strength, but not toughness, in inbred mouse models of high and low bone mass. J Bone Miner Res 23:1194–1203

    Article  PubMed  Google Scholar 

  53. Volkman SK, Galecki AT, Burke DT, Paczas MR, Moalli MR, Miller RA, Goldstein SA (2003) Quantitative trait loci for femoral size and shape in a genetically heterogeneous mouse population. J Bone Miner Res 18:1497–1505

    Article  CAS  PubMed  Google Scholar 

  54. Veldhuis JD, Metzger DL, Martha PM Jr, Mauras N, Kerrigan JR, Keenan B, Rogol AD, Pincus SM (1997) Estrogen and testosterone, but not a nonaromatizable androgen, direct network integration of the hypothalamo-somatotrope (growth hormone)-insulin-like growth factor I axis in the human: evidence from pubertal pathophysiology and sex-steroid hormone replacement. J Clin Endocrinol Metab 82:3414–3420

    Article  CAS  PubMed  Google Scholar 

  55. Leung KC, Johannsson G, Leong GM, Ho KK (2004) Estrogen regulation of growth hormone action. Endocr Rev 25:693–721

    Article  CAS  PubMed  Google Scholar 

  56. Cohen P, Bright GM, Rogol AD, Kappelgaard AM, Rosenfeld RG (2002) Effects of dose and gender on the growth and growth factor response to GH in GH-deficient children: implications for efficacy and safety. J Clin Endocrinol Metab 87:90–98

    Article  CAS  PubMed  Google Scholar 

  57. Span JP, Pieters GF, Sweep CG, Hermus AR, Smals AG (2000) Gender difference in insulin-like growth factor I response to growth hormone (GH) treatment in GH-deficient adults: role of sex hormone replacement. J Clin Endocrinol Metab 85:1121–1125

    Article  CAS  PubMed  Google Scholar 

  58. Venken K, Schuit F, Van Lommel L, Tsukamoto K, Kopchick JJ, Coschigano K, Ohlsson C, Moverare S, Boonen S, Bouillon R, Vanderschueren D (2005) Growth without growth hormone receptor: estradiol is a major growth hormone–independent regulator of hepatic IGF-I synthesis. J Bone Miner Res 20:2138–2149

    Article  CAS  PubMed  Google Scholar 

  59. Mauras N, Rogol AD, Haymond MW, Veldhuis JD (1996) Sex steroids, growth hormone, insulin-like growth factor-1: neuroendocrine and metabolic regulation in puberty. Horm Res 45:74–80

    Article  CAS  PubMed  Google Scholar 

  60. Venken K, Moverare-Skrtic S, Kopchick JJ, Coschigano KT, Ohlsson C, Boonen S, Bouillon R, Vanderschueren D (2007) Impact of androgens, growth hormone, and IGF-I on bone and muscle in male mice during puberty. J Bone Miner Res 22:72–82

    Article  CAS  PubMed  Google Scholar 

  61. Salih DA, Mohan S, Kasukawa Y, Tripathi G, Lovett FA, Anderson NF, Carter EJ, Wergedal JE, Baylink DJ, Pell JM (2005) Insulin-like growth factor-binding protein-5 induces a gender-related decrease in bone mineral density in transgenic mice. Endocrinology 146:931–940

    Article  CAS  PubMed  Google Scholar 

  62. DeMambro VE, Clemmons DR, Horton LG, Bouxsein ML, Wood TL, Beamer WG, Canalis E, Rosen CJ (2008) Gender-specific changes in bone turnover and skeletal architecture in igfbp-2-null mice. Endocrinology 149:2051–2061

    Article  CAS  PubMed  Google Scholar 

  63. Courtland HW, DeMambro V, Maynard J, Sun H, Elis S, Rosen C, Yakar S (2010) Sex-specific regulation of body size and bone slenderness by the acid labile subunit. J Bone Miner Res 25:2059–2068

    Article  PubMed  Google Scholar 

  64. Vanderschueren D, Vandenput L, Boonen S, Lindberg MK, Bouillon R, Ohlsson C (2004) Androgens and bone. Endocr Rev 25:389–425

    Article  CAS  PubMed  Google Scholar 

  65. Michael H, Harkonen PL, Vaananen HK, Hentunen TA (2005) Estrogen and testosterone use different cellular pathways to inhibit osteoclastogenesis and bone resorption. J Bone Miner Res 20:2224–2232

    Article  CAS  PubMed  Google Scholar 

  66. Hughes DE, Dai A, Tiffee JC, Li HH, Mundy GR, Boyce BF (1996) Estrogen promotes apoptosis of murine osteoclasts mediated by TGF-beta. Nat Med 2:1132–1136

    Article  CAS  PubMed  Google Scholar 

  67. Wiren KM, Toombs AR, Zhang XW (2004) Androgen inhibition of MAP kinase pathway and Elk-1 activation in proliferating osteoblasts. J Mol Endocrinol 32:209–226

    Article  CAS  PubMed  Google Scholar 

  68. Wiren KM, Zhang XW, Toombs AR, Kasparcova V, Gentile MA, Harada S, Jepsen KJ (2004) Targeted overexpression of androgen receptor in osteoblasts: unexpected complex bone phenotype in growing animals. Endocrinology 145:3507–3522

    Article  CAS  PubMed  Google Scholar 

  69. Gori F, Hofbauer LC, Conover CA, Khosla S (1999) Effects of androgens on the insulin-like growth factor system in an androgen-responsive human osteoblastic cell line. Endocrinology 140:5579–5586

    Article  CAS  PubMed  Google Scholar 

  70. Turner RT, Kidder LS, Zhang M, Harris SA, Westerlind KC, Maran A, Wronski TJ (1999) Estrogen has rapid tissue-specific effects on rat bone. J Appl Physiol 86:1950–1958

    CAS  PubMed  Google Scholar 

  71. Kearns AE, Khosla S, Kostenuik PJ (2008) Receptor activator of nuclear factor kappaB ligand and osteoprotegerin regulation of bone remodeling in health and disease. Endocr Rev 29:155–192

    Article  CAS  PubMed  Google Scholar 

  72. Wiren KM (2005) Androgens and bone growth: it’s location, location, location. Curr Opin Pharmacol 5:626–632

    Article  CAS  PubMed  Google Scholar 

  73. Jessop HL, Sjoberg M, Cheng MZ, Zaman G, Wheeler-Jones CP, Lanyon LE (2001) Mechanical strain and estrogen activate estrogen receptor alpha in bone cells. J Bone Miner Res 16:1045–1055

    Article  CAS  PubMed  Google Scholar 

  74. Aguirre JI, Plotkin LI, Gortazar AR, Millan MM, O’Brien CA, Manolagas SC, Bellido T (2007) A novel ligand-independent function of the estrogen receptor is essential for osteocyte and osteoblast mechanotransduction. J Biol Chem 282:25501–25508

    Article  CAS  PubMed  Google Scholar 

  75. Saxon LK, Robling AG, Castillo AB, Mohan S, Turner CH (2007) The skeletal responsiveness to mechanical loading is enhanced in mice with a null mutation in estrogen receptor-beta. Am J Physiol Endocrinol Metab 293:E484–E491

    Article  CAS  PubMed  Google Scholar 

  76. Lee KC, Jessop H, Suswillo R, Zaman G, Lanyon LE (2004) The adaptive response of bone to mechanical loading in female transgenic mice is deficient in the absence of oestrogen receptor-alpha and -beta. J Endocrinol 182:193–201

    Article  CAS  PubMed  Google Scholar 

  77. Damien E, Price JS, Lanyon LE (2000) Mechanical strain stimulates osteoblast proliferation through the estrogen receptor in males as well as females. J Bone Miner Res 15:2169–2177

    Article  CAS  PubMed  Google Scholar 

  78. Cheng MZ, Rawlinson SC, Pitsillides AA, Zaman G, Mohan S, Baylink DJ, Lanyon LE (2002) Human osteoblasts’ proliferative responses to strain and 17beta-estradiol are mediated by the estrogen receptor and the receptor for insulin-like growth factor I. J Bone Miner Res 17:593–602

    Article  CAS  PubMed  Google Scholar 

  79. Zofkova I (2008) Hormonal aspects of the muscle-bone unit. Physiol Res 57(Suppl 1):S159–S169

    CAS  PubMed  Google Scholar 

  80. Ophoff J, Van Proeyen K, Callewaert F, De Gendt K, De Bock K, Vanden Bosch A, Verhoeven G, Hespel P, Vanderschueren D (2009) Androgen signaling in myocytes contributes to the maintenance of muscle mass and fiber type regulation but not to muscle strength or fatigue. Endocrinology 150:3558–3566

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

The authors thank Dr. Jon Wergedal for critically reading the manuscript. The work was supported by funding from the NIH (AR48139 to S. M.) and facilities provided by the Department of Veterans Affairs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subburaman Mohan.

Additional information

The authors have stated that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olson, L.E., Ohlsson, C. & Mohan, S. The Role of GH/IGF-I-Mediated Mechanisms in Sex Differences in Cortical Bone Size in Mice. Calcif Tissue Int 88, 1–8 (2011). https://doi.org/10.1007/s00223-010-9436-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-010-9436-2

Keywords

Navigation