Skip to main content

Advertisement

Log in

On the trend to global equilibrium for spatially inhomogeneous kinetic systems: The Boltzmann equation

  • Published:
Inventiones mathematicae Aims and scope

Abstract

As part of our study of convergence to equilibrium for spatially inhomogeneous kinetic equations, started in [21], we derive estimates on the rate of convergence to equilibrium for solutions of the Boltzmann equation, like O(t-∞). Our results hold conditionally to some strong but natural estimates of smoothness, decay at large velocities and strict positivity, which at the moment have only been established in certain particular cases. Among the most important steps in our proof are 1) quantitative variants of Boltzmann’s H-theorem, as proven in [52,60], based on symmetry features, hypercontractivity and information-theoretical tools; 2) a new, quantitative version of the instability of the hydrodynamic description for non-small Knudsen number; 3) some functional inequalities with geometrical content, in particular the Korn-type inequality which we established in [22]; and 4) the study of a system of coupled differential inequalities of second order, by a treatment inspired from [21]. We also briefly point out the particular role of conformal velocity fields, when they are allowed by the geometry of the problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexandre, R., Villani, C.: On the Boltzmann equation for long-range interactions. Commun. Pure Appl. Math. 55, 30–70 (2002)

    Article  MathSciNet  Google Scholar 

  2. Alexandre, R., Villani, C.: On the Landau approximation in plasma physics. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 21, 61–95 (2004)

    MathSciNet  Google Scholar 

  3. Arkeryd, L.: Stability in L1 for the spatially homogeneous Boltzmann equation. Arch. Ration. Mech. Anal. 103, 151–167 (1988)

    Article  MathSciNet  Google Scholar 

  4. Arkeryd, L., Nouri, A.: Boltzmann asymptotics with diffuse reflection boundary conditions. Monatsh. Math. 123, 285–298 (1997)

    Article  MathSciNet  Google Scholar 

  5. Baranger, C., Mouhot, C.: Explicit spectral gap estimates for the Boltzmann and Landau operators. To appear in Rev. Mat. Iberoam.

  6. Bardos, C., Golse, F., Levermore, D.: Fluid dynamical limits of kinetic equations, II: Convergence proofs for the Boltzmann equation. Commun. Pure Appl. Math. 46, 667–753 (1993)

    Article  MathSciNet  Google Scholar 

  7. Brush, S.: Kinetic Theory, Vol. 2: Irreversible Processes. Oxford: Pergamon Press 1966

  8. Cáceres, M.-J., Carrillo, J.-A., Goudon, T.: Equilibration rate for the linear inhomogeneous relaxation-time Boltzmann equation for charged particles. Commun. Partial Differ. Equations 28, 969–989 (2003)

    Article  Google Scholar 

  9. Caflisch, R.: The Boltzmann equation with a soft potential. I. linear, spatially-homogeneous. II. nonlinear, spatially-periodic. Commun. Math. Phys. 74, 71–95, 97–109 (1980)

    MathSciNet  Google Scholar 

  10. Carleman, T.: Sur la théorie de l’equation intégrodifférentielle de Boltzmann. Acta Math. 60, 369–424 (1932)

    Google Scholar 

  11. Carlen, E., Carvalho, M.: Strict entropy production bounds and stability of the rate of convergence to equilibrium for the Boltzmann equation. J. Stat. Phys. 67, 575–608 (1992)

    Article  MathSciNet  Google Scholar 

  12. Carlen, E., Carvalho, M.: Entropy production estimates for Boltzmann equations with physically realistic collision kernels. J. Stat. Phys. 74, 743–782 (1994)

    Article  MathSciNet  Google Scholar 

  13. Carlen, E., Carvalho, M., Loss, M.: Determination of the spectral gap for Kac’s master equation and related stochastic evolutions. Acta Math. 191, 1–54 (2003)

    Article  MathSciNet  Google Scholar 

  14. Cercignani, C.: Ludwig Boltzmann, the man who trusted atoms. New York: Oxford University Press 1998

  15. Cercignani, C.: Rarefied gas dynamics. From basic concepts to actual calculations. Cambridge: Cambridge University Press 2000

  16. Degond, P., Pareschi, L., Russo, G. (eds.): Modeling and computational methods for kinetic equations. Birkhäuser 2003

  17. Desvillettes, L.: Entropy dissipation rate and convergence in kinetic equations. Commun. Math. Phys. 123, 687–702 (1989)

    Article  MathSciNet  Google Scholar 

  18. Desvillettes, L.: Convergence to equilibrium in large time for Boltzmann and BGK equations. Arch. Ration. Mech. Anal. 110, 73–91 (1990)

    Article  MathSciNet  Google Scholar 

  19. Desvillettes, L.: Convergence to equilibrium in various situations for the solution of the Boltzmann equation. In: Nonlinear kinetic theory and mathematical aspects of hyperbolic systems (Rapallo, 1992), pp. 101–114. River Edge, NJ: World Sci. Publishing 1992

  20. Desvillettes, L., Villani, C.: On the spatially homogeneous Landau equation for hard potentials. II. H-theorem and applications. Commun. Partial Differ. Equations 25, 261–298 (2000)

    Article  MathSciNet  Google Scholar 

  21. Desvillettes, L., Villani, C.: On the trend to global equilibrium in spatially inhomogeneous entropy-dissipating systems: the linear Fokker-Planck equation. Commun. Pure Appl. Math. 54, 1–42 (2001)

    Article  MathSciNet  Google Scholar 

  22. Desvillettes, L., Villani, C.: On a variant of Korn’s inequality arising in statistical mechanics. ESAIM, Control Optim. Calc. Var. 8, 603–619 (2002) (electronic). A tribute to J.L. Lions

    Article  MathSciNet  Google Scholar 

  23. Diaconis, P., Saloff-Coste, L.: Bounds for Kac’s master equation. Commun. Math. Phys. 209, 729–755 (2000)

    Article  MathSciNet  Google Scholar 

  24. DiPerna, R., Lions, P.-L.: On the Cauchy problem for the Boltzmann equation: Global existence and weak stability. Ann. Math. (2) 130, 312–366 (1989)

  25. Fellner, K., Neumann, L., Schmeiser, C.: Convergence to global equilibrium for spatially inhomogeneous kinetic models of non-micro-reversible processes. Monatsh. Math. 141, 289–299 (2004)

    Article  MathSciNet  Google Scholar 

  26. Filbet, F., Russo, G.: High order numerical methods for the space non-homogeneous Boltzmann equation. J. Comput. Phys. 186, 457–480 (2003)

    Article  MathSciNet  Google Scholar 

  27. Filbet, F.: Quelques résultats numériques sur l’équation de Boltzmann non homogène. Preprint 2004

  28. Gallay, T., Wayne, C.: Invariant manifolds and the long-time asymptotics of the Navier-Stokes and vorticity equations on ℝ2. Arch. Ration. Mech. Anal. 163, 209–258 (2002)

    Article  MathSciNet  Google Scholar 

  29. Golse, F., Saint-Raymond, L.: The Navier-Stokes limit of the Boltzmann equation: Convergence proof. Invent. Math. 155, 81–161 (2004)

    Article  MathSciNet  Google Scholar 

  30. Grad, H.: On Boltzmann’s H-theorem. J. Soc. Indust. Appl. Math. 13, 259–277 (1965)

    Article  MathSciNet  Google Scholar 

  31. Guo, Y.: The Landau equation in a periodic box. Commun. Math. Phys. 231, 391–434 (2002)

    Article  Google Scholar 

  32. Guo, Y.: Classical solutions to the Boltzmann equation for molecules with an angular cutoff. Arch. Ration. Mech. Anal. 169, 305–353 (2003)

    Article  MathSciNet  Google Scholar 

  33. Guo, Y.: The Vlasov-Maxwell-Boltzmann system near Maxwellians. Invent. Math. 153, 593–630 (2003)

    Article  MathSciNet  Google Scholar 

  34. Guo, Y.: Private communication (December 2003)

  35. Gustafsson, T.: Lp-estimates for the nonlinear spatially homogeneous Boltzmann equation. Arch. Ration. Mech. Anal. 92, 23–57 (1986)

    Article  MathSciNet  Google Scholar 

  36. Helffer, B., Nier, F.: Hypoellipticity and spectral theory for Fokker-Planck operators and Witten Laplacians. Preprint 03-25, Université de Rennes (2003). Available at http://name.math.univ-rennes1.fr/francis.nier/recherche/liste.html

  37. Hérau, F., Nier, F.: Isotropic hypoellipticity and trend to the equilibrium for the Fokker-Planck equation with high degree potential. Arch. Ration. Mech. Anal. 171, 151–218 (2004)

    Article  MathSciNet  Google Scholar 

  38. Janvresse, E.: Spectral gap for Kac’s model of Boltzmann equation. Ann. Probab. 29, 288–304 (2001)

    Article  MathSciNet  Google Scholar 

  39. Kac, M.: Foundations of kinetic theory. In: Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, 1954–1955, vol. III, pp. 171–197. Berkeley, Los Angeles: University of California Press 1956

  40. Lions, P.-L., Masmoudi, N.: From the Boltzmann equations to the equations of incompressible fluid mechanics. I, II. Arch. Ration. Mech. Anal. 158, 173–193, 195–211 (2001)

    Article  Google Scholar 

  41. Lu, X.: Spatial decay solutions of the Boltzmann equation: converse properties of long time limiting behavior. SIAM J. Math. Anal. 30, 1151–1174 (1999)

    Article  MathSciNet  Google Scholar 

  42. McKean, H. J.: Speed of approach to equilibrium for Kac’s caricature of a Maxwellian gas. Arch. Ration. Mech. Anal. 21, 343–367 (1966)

    Article  MathSciNet  Google Scholar 

  43. Mouhot, C.: Quantitative lower bounds for the full Boltzmann equation. Preprint 2003

  44. Mouhot, C., Villani, C.: Regularity theory for the spatially homogeneous Boltzmann equation with cutoff. Arch. Ration. Mech. Anal., in press

  45. Pitteri, M.: On the asymptotic behaviour of Boltzmann’s H function in the kinetic theory of gases. Rend. Sc. Fis. Mat. e Nat. 67, 248–251 (1979)

    MathSciNet  Google Scholar 

  46. Poincaré, H.: Le mécanisme et l’expérience. Revue de Métaphysique et de Morale I, 534–537 (1893)

  47. Pulvirenti, A., Wennberg, B.: A Maxwellian lower bound for solutions to the Boltzmann equation. Commun. Math. Phys. 183, 145–160 (1997)

    Article  MathSciNet  Google Scholar 

  48. Shizuta, Y., Asano, K.: Global solutions of the Boltzmann equation in a bounded convex domain. Proc. Japan Acad., Ser. A 53, 3–5 (1977)

    Article  MathSciNet  Google Scholar 

  49. Spohn, H.: Large scale dynamics of interacting particles. Texts and Monographs in Physics. Berlin: Springer 1991

  50. Sznitman, A.-S.: Topics in propagation of chaos. In: École d’Été de Probabilités de Saint-Flour XIX–1989, pp. 165–251. Berlin: Springer 1991

  51. Toscani, G.: H-theorem and asymptotic trend to equilibrium of the solution for a rarefied gas in the vacuum. Arch. Ration. Mech. Anal. 100, 1–12 (1987)

    Article  MathSciNet  Google Scholar 

  52. Toscani, G., Villani, C.: Sharp entropy dissipation bounds and explicit rate of trend to equilibrium for the spatially homogeneous Boltzmann equation. Commun. Math. Phys. 203, 667–706 (1999)

    Article  MathSciNet  Google Scholar 

  53. Toscani, G., Villani, C.: On the trend to equilibrium for some dissipative systems with slowly increasing a priori bounds. J. Stat. Phys. 98, 1279–1309 (2000)

    Article  MathSciNet  Google Scholar 

  54. Truesdell, C., Muncaster, R.: Fundamentals of Maxwell’s kinetic theory of a simple monoatomic gas. New York: Academic Press 1980

  55. Ukai, S.: On the existence of global solutions of mixed problem for non-linear Boltzmann equation. Proc. Japan Acad. 50, 179–184 (1974)

    Article  MathSciNet  Google Scholar 

  56. Villani, C.: Fisher information bounds for Boltzmann’s collision operator. J. Math. Pures Appl. 77, 821–837 (1998)

    Article  MathSciNet  Google Scholar 

  57. Villani, C.: Limites hydrodynamiques de l’équation de Boltzmann (d’après C. Bardos, F. Golse, C. D. Levermore, P.-L. Lions, N. Masmoudi, L. Saint-Raymond). Astérisque 282 (2002), Exp. No. 893, ix, 365–405. Séminaire Bourbaki, Vol. 2000/2001

  58. Villani, C.: A review of mathematical topics in collisional kinetic theory. In: Handbook of mathematical fluid dynamics, Vol. I, pp. 71–305. Amsterdam: North-Holland 2002

  59. Villani, C.: On the Boltzmann equation with singular kernel. Unpublished notes

  60. Villani, C.: Cercignani’s conjecture is sometimes true and always almost true. Commun. Math. Phys. 234, 455–490 (2003)

    Article  MathSciNet  Google Scholar 

  61. Villani, C.: Topics in Optimal Transportation, vol. 58 of Graduate Series in Mathematics. Providence: American Mathematical Society 2003

  62. Wennberg, B.: Stability and exponential convergence in Lp for the spatially homogeneous Boltzmann equation. Nonlinear Anal. 20, 935–964 (1993)

    Article  MathSciNet  Google Scholar 

  63. Wennberg, B.: Stability and exponential convergence for the Boltzmann equation. Arch. Ration. Mech. Anal. 130, 103–144 (1995)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L. Desvillettes or C. Villani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Desvillettes, L., Villani, C. On the trend to global equilibrium for spatially inhomogeneous kinetic systems: The Boltzmann equation. Invent. math. 159, 245–316 (2005). https://doi.org/10.1007/s00222-004-0389-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-004-0389-9

Keywords

Navigation