Skip to main content
Log in

Stability and exponential convergence for the Boltzmann equation

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We prove existence, uniqueness and stability for solutions of the nonlinear Boltzmann equation in a periodic box in the case when the initial data are sufficiently close to a spatially homogeneous function. The results are given for a range of spaces, including L 1, and extend previous results in L for the non-homogeneous equation, as well as the more developed L p-theory for the spatially homogeneous Boltzmann equation.

We also give new L -estimates for the spatially homogeneous equation in the case of Maxwellian interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Arkeryd, On the Boltzmann equation, Arch. Rational Mech. Anal. 34, 1–34 (1972).

    Google Scholar 

  2. L. Arkeryd, L -estimates for the space homogeneous Boltzmann equation, J. Statist. Phys. 31, 347–361 (1982).

    Google Scholar 

  3. L. Arkeryd, On the Boltzmann equation in unbounded space far from equilibrium, and the limit of zero mean free path, Comm. Math. Phys. 105, 205–219 (1986).

    Google Scholar 

  4. L. Arkeryd, Stability in L 1 for the spatially homogeneous Boltzmann equation, Arch Rational Mech. Anal. 103, 151–167 (1988).

    Google Scholar 

  5. L. Arkeryd, Existence theorems for certain kinetic equations and large data, Arch. Rational Mech. Anal. 103, 139–149 (1988).

    Google Scholar 

  6. L. Arkeryd, On the strong trend to equilibrium for the Boltzmann equation, Stud. Appl. Math. 87, 283–288 (1992).

    Google Scholar 

  7. L. Arkeryd, R. Esposito & M. Pulvirenti, The Boltzmann equation for weakly inhomogeneous data, Comm. Math. Phys. 111, 393–407 (1987).

    Google Scholar 

  8. R. A. Adams, Sobolev spaces, Academic Press, New York (1970).

    Google Scholar 

  9. J. Bergh & J. Löfström, Interpolation spaces, an introduction, Springer, Berlin (1976).

    Google Scholar 

  10. A. V. Bobylev, The theory of the nonlinear spatially uniform Boltzmann equation for Maxwellian molecules, Soviet Scient. Rev., c 7, 111–233 (1988).

    Google Scholar 

  11. N. Bellomo, A. Palczewski & G. Toscani, Mathematical topics in non-linear kinetic theory, World Scientific, Singapore (1988).

    Google Scholar 

  12. T. Carleman, Problèmes mathématiques dans la théorie cinétique des gaz, Almqvist & Wiksell, Uppsala (1957).

    Google Scholar 

  13. R. Caflisch, The Boltzmann equation with a soft potential, Comm. Math. Phys. 74, 71–109 (1980).

    Google Scholar 

  14. C. Cercignani, The theory and application of the Boltzmann equation, Springer, New York (1988).

    Google Scholar 

  15. F. Cobos, T. Kühn & T. Schonbek, One-sided compactness results for Aronszajn-Gagliardo functors, J. Funct. Anal. 106, 274–313 (1992).

    Article  Google Scholar 

  16. M. Cwikel, Real and complex interpolation and extrapolation of compact operators, Duke Math. J. 65, 333–343 (1992).

    Google Scholar 

  17. L. Desvillettes, Some applications of the method of moments for the homogeneous Boltzmann and Kac equations, Arch. Rational Mech. Anal. 123, 387–404 (1993).

    Google Scholar 

  18. R. DiPerna & P.-L. Lions, On the Cauchy problem for the Boltzmann equation; global existence and weak stability, Ann. Math. 130, 321–366 (1989).

    Google Scholar 

  19. T. Elmroth, Global boundedness of moments of solutions of the Boltzmann equation for forces of infinite range, Arch. Rational Mech. Anal. 82, 1–12 (1983).

    Google Scholar 

  20. T. Elmroth, On the H-function and convergence towards equilibrium for a space homogeneous molecular density, SIAM J. Appl. Math. 44, 150–159 (1984).

    Google Scholar 

  21. F. Golse, P. -L. Lions, B. Perthame & R. Sentis, The regularity of the moments of the solution of a transport equation, J. Funct. Anal. 76, 110–125 (1988).

    Google Scholar 

  22. H. Grad, Asymptotic theory of the Boltzmann equation II, 26–59, in Rarefied gas dynamics I, J. A. Laurmann, Ed., Academic Press, New York (1963).

    Google Scholar 

  23. T. Gustafsson, L p-estimates for the nonlinear spatially homogeneous Boltzmann equation, Arch. Rational Mech. Anal. 92, 23–57 (1986).

    Article  Google Scholar 

  24. T. Gustafsson, Global L p-properties for the spatially homogeneous Boltzmann equation, Arch. Rational Mech. Anal. 103, 1–38 (1988).

    Article  Google Scholar 

  25. T. Gustafsson, Interpolation and convolution properties for Q. L p -convergence towards equilibrium, Technical report, Department of Mathematics, Chalmers University of Technology and the University of Göteborg (1989).

  26. E. Hille & R. Phillips, Functional analysis and semigroups, Amer. Math. Soc. (1957).

  27. R. Illner & M. Shinbrot, The Boltzmann equation: global existence for a rare gas in an infinite vacuum, Comm. Math. Phys. 95, 217–226 (1984).

    Google Scholar 

  28. T. Kato, Perturbation theory for linear operators, Springer, New York (1966).

    Google Scholar 

  29. H. G. Kaper, C. G. Lekkerkerker & J. Hejtmanek, Spectral methods in linear transport theory, Birkhäuser Verlag, Basel (1982).

    Google Scholar 

  30. S. G. Krein, Ju. I. Petunin, E. M. Semenov, Interpolation of linear operators, Amer. Math. Soc. Providence, Rhode Island (1982).

    Google Scholar 

  31. A. Palczewski, Spectral properties of the space nonhomogeneous linearized Boltzmann operator, Transp. Theory Stat. Phys. 13, 409–430 (1984).

    Google Scholar 

  32. A. Palczewski, Evolution operators generated by the space and time non-homogeneous linearized Boltzmann operator, Transp. Theory Stat. Phys. 14, 1–33 (1984).

    Google Scholar 

  33. A. Pazy, Semigroups of linear operators and applications to partial differential equations, Springer, New York (1983).

    Google Scholar 

  34. Y. Shizuta, On the classical solution of the Boltzmann equation, Comm. Pure Appl. Math. 36, 705–754 (1983).

    Google Scholar 

  35. G. Toscani, On the non-linear Boltzmann equation in unbounded domains, Arch. Rational Mech. Anal. 95, 37–49 (1986).

    Article  Google Scholar 

  36. S. Ukai, On the existence of global solutions of mixed problems for non-linear Boltzmann equation, Proc. Japan Acad. 50, 179–184 (1974).

    Google Scholar 

  37. S. Ukai, Solutions of the Boltzmann equation, in Patterns and waves — Qualitative analysis of nonlinear differential equations, H. Fujita, J. L. Lions, G. Papanicolaou & H. B. Keller, eds., Kinokuniya (1986).

  38. I. Vidav, Existence and uniqueness of nonnegative eigenfunctions of the Boltzmann equation, J. Math. Anal. Appl. 22, 144–155 (1968).

    Article  Google Scholar 

  39. B. Wennberg, Stability and exponential convergence in L p for the spatially homogeneous Boltzmann equation, Nonl. Analysis T.M.A. 20, 935–964 (1993).

    Google Scholar 

  40. B. Wennberg, On moments and uniqueness for the space homogeneous Boltzmann equation, Tramp. Theory Stat. Phys. 23, 533–539 (1994).

    Google Scholar 

  41. B. Wennberg, Stability and exponential convergence for the Boltzmann equation, thesis, Chalmers University of Technology (1993).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by L. Arkeryd

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wennberg, B. Stability and exponential convergence for the Boltzmann equation. Arch. Rational Mech. Anal. 130, 103–144 (1995). https://doi.org/10.1007/BF00375152

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00375152

Keywords

Navigation