Skip to main content
Log in

The effects of task demands on bimanual skill acquisition

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Bimanual coordination is essential for everyday activities. It is thought that different degrees of demands may affect learning of new bimanual patterns. One demand is at the level of performance and involves breaking the tendency to produce mirror-symmetric movements. A second is at a perceptual level and involves controlling each hand to separate (i.e., split) goals. A third demand involves switching between different task contexts (e.g., a different uni- or bimanual task), instead of continuously practicing one task repeatedly. Here, we studied the effect of these task demands on motor planning (reaction time) and execution (error) while subjects learned a novel bimanual isometric pinch force task. In Experiment 1, subjects continuously practiced in one of the two extremes of the following bimanual conditions: (1) symmetric force demands and a perceptually unified target for each hand or (2) asymmetric force demands and perceptually split targets. Subjects performing in the asymmetric condition showed some interference between hands, but all subjects, regardless of group, could learn the isometric pinch force task similarly. In Experiment 2, subjects practiced these and two other conditions, but in a paradigm where practice was briefly interrupted by the performance of either a unimanual or a different bimanual condition. Reaction times were longer and errors were larger well after the interruption when the main movement to be learned required asymmetric forces. There was no effect when the main movement required symmetric forces. These findings demonstrate two main points. First, people can learn bimanual tasks with very different demands on the same timescale if they are not interrupted. Second, interruption during learning can negatively impact both planning and execution and this depends on the demands of the bimanual task to be learned. This information will be important for training patient populations, who may be more susceptible to increased task demands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Allport DA, Styles EA, Hsieh S (1994) Shifting intentional set: exploring the dynamic control of tasks. In: Umiltà C, Moscovitch M, Umiltà C, Moscovitch M (eds) Attention and performance 15: conscious and nonconscious information processing. The MIT Press, Cambridge, pp 421–452

    Google Scholar 

  • Amazeen EL, Ringenbach SD, Amazeen PG (2005) The effects of attention and handedness on coordination dynamics in a bimanual Fitts’ law task. Exp Brain Res 164:484–499. doi:10.1007/s00221-005-2269-y

    Article  PubMed  Google Scholar 

  • Belger A, Banich MT (1998) Costs and benefits of integrating information between the cerebral hemispheres: a computational perspective. Neuropsychology 12:380–398

    Article  PubMed  CAS  Google Scholar 

  • Bernardin BJ, Mason AH (2011) Bimanual coordination affects motor task switching. Exp Brain Res 215:257–267. doi:10.1007/s00221-011-2890-x

    Article  PubMed  Google Scholar 

  • Brashers-Krug T, Shadmehr R, Bizzi E (1996) Consolidation in human motor memory. Nature 382:252–255. doi:10.1038/382252a0

    Article  PubMed  CAS  Google Scholar 

  • Braver TS, Reynolds JR, Donaldson DI (2003) Neural mechanisms of transient and sustained cognitive control during task switching. Neuron 39:713–726

    Article  PubMed  CAS  Google Scholar 

  • Caeyenberghs K, Leemans A, Coxon J, Leunissen I, Drijkoningen D, Geurts M, Gooijers J, Michiels K, Sunaert S, Swinnen SP (2011) Bimanual coordination and corpus callosum microstructure in young adults with traumatic brain injury: a diffusion tensor imaging study. J Neurotrauma 28:897–913. doi:10.1089/neu.2010.1721

    Article  PubMed  Google Scholar 

  • Cardoso de Oliveira S, Barthelemy S (2005) Visual feedback reduces bimanual coupling of movement amplitudes, but not of directions. Exp Brain Res 162:78–88. doi:10.1007/s00221-004-2107-7

    Article  PubMed  Google Scholar 

  • De Jong WP, Van Galen GP (1999) Muscles act as low-pass filters on neuromotor noise. Proceedings of the 9th biennial conference of the international graphonomics society, pp 25–29

  • Diedrichsen J, Hazeltine E, Kennerley S, Ivry RB (2001) Moving to directly cued locations abolishes spatial interference during bimanual actions. Psychol Sci 12:493–498

    Article  PubMed  CAS  Google Scholar 

  • Diedrichsen J, Hazeltine E, Nurss WK, Ivry RB (2003a) The role of the corpus callosum in the coupling of bimanual isometric force pulses. J Neurophysiol 90:2409–2418. doi:10.1152/jn.00250.2003

    Article  PubMed  Google Scholar 

  • Diedrichsen J, Ivry RB, Hazeltine E, Kennerley S, Cohen A (2003b) Bimanual interference associated with the selection of target locations. J Exp Psychol Hum Percept Perform 29:64–77

    Article  PubMed  Google Scholar 

  • Diedrichsen J, Nabisan R, Kennerley SW, Ivry RB (2004) Independent on-line control of the two hands during bimanual reaching. Eur J Neurosci 19:1643–1652. doi:10.1111/j.1460-9568.2004.03242.x

    Article  PubMed  Google Scholar 

  • Dove A, Pollmann S, Schubert T, Wiggins CJ, von Cramon DY (2000) Prefrontal cortex activation in task switching: an event-related fMRI study. Brain Res Cogn Brain Res 9:103–109

    Article  PubMed  CAS  Google Scholar 

  • Franz EA (2004) Attentional distribution of task parameters to the two hands during bimanual performance of right- and left-handers. J Mot Behav 36:71–81. doi:10.3200/JMBR.36.1.71-81

    Article  PubMed  Google Scholar 

  • Franz EA, McCormick R (2010) Conceptual unifying constraints override sensorimotor interference during anticipatory control of bimanual actions. Exp Brain Res 205:273–282. doi:10.1007/s00221-010-2365-5

    Article  PubMed  Google Scholar 

  • Franz EA, Zelaznik HN, McCabe G (1991) Spatial topological constraints in a bimanual task. Acta Psychol (Amst) 77:137–151

    Article  CAS  Google Scholar 

  • Franz EA, Eliassen JC, Ivry RB, Gazzaniga MS (1996) Dissociation of spatial and temporal coupling in the bimanual movements of callosotomy patients. Psychol Sci 7:306–310. doi:10.1111/j.1467-9280.1996.tb00379.x

    Article  Google Scholar 

  • Franz EA, Zelaznik HN, Swinnen SS, Walter C (2001) Spatial conceptual influences on the coordination of bimanual actions: when a dual task becomes a single task. J Mot Behav 33:103–112. doi:10.1080/00222890109601906

    Article  PubMed  CAS  Google Scholar 

  • Gerloff C, Andres FG (2002) Bimanual coordination and interhemispheric interaction. Acta Psychol (Amst) 110:161–186

    Article  Google Scholar 

  • Goedert KM, Willingham DB (2002) Patterns of interference in sequence learning and prism adaptation inconsistent with the consolidation hypothesis. Learn Mem 9:279–292. doi:10.1101/lm.50102

    Article  PubMed  Google Scholar 

  • Gopher D, Armony L, Greenshpan Y (2000) Switching tasks and attention policies. J Exp Psychol Gen 129:308–339

    Article  PubMed  CAS  Google Scholar 

  • Gordon J, Ghez C (1987) Trajectory control in targeted force impulses. II. Pulse height control. Exp Brain Res 67:241–252

    Article  PubMed  CAS  Google Scholar 

  • Harabst KB, Lazarus JA, Whitall J (2000) Accuracy of dynamic isometric force production: the influence of age and bimanual activation patters. Motor Control 4:232–256

    PubMed  CAS  Google Scholar 

  • Hazeltine E, Diedrichsen J, Kennerley SW, Ivry RB (2003) Bimanual cross-talk during reaching movements is primarily related to response selection, not the specification of motor parameters. Psychol Res 67:56–70. doi:10.1007/s00426-002-0119-0

    PubMed  Google Scholar 

  • Heuer H, Spijkers W, Kleinsorge T, van der Loo H, Steglich C (1998) The time course of cross-talk during the simultaneous specification of bimanual movement amplitudes. Exp Brain Res 118:381–392

    Article  PubMed  CAS  Google Scholar 

  • Hu X, Newell KM (2011) Dependence of asymmetrical interference on task demands and hand dominance in bimanual isometric force tasks. Exp Brain Res 208:533–541. doi:10.1007/s00221-010-2502-1

    Article  PubMed  Google Scholar 

  • Jones KE, Hamilton AF, Wolpert DM (2002) Sources of signal-dependent noise during isometric force production. J Neurophysiol 88:1533–1544

    Article  PubMed  Google Scholar 

  • Kelso JA, Southard DL, Goodman D (1979) On the nature of human interlimb coordination. Science 203:1029–1031

    Article  PubMed  CAS  Google Scholar 

  • Kiesel A, Steinhauser M, Wendt M, Falkenstein M, Jost K, Philipp AM, Koch I (2010) Control and interference in task switching–a review. Psychol Bull 136:849–874. doi:10.1037/a0019842

    Article  PubMed  Google Scholar 

  • Kilbreath SL, Heard RC (2005) Frequency of hand use in healthy older persons. Aust J Physiother 51:119–122

    Article  PubMed  Google Scholar 

  • Kim YH, Jang SH, Chang Y, Byun WM, Son S, Ahn SH (2003) Bilateral primary sensori-motor cortex activation of post-stroke mirror movements: an fMRI study. NeuroReport 14:1329–1332. doi:10.1097/01.wnr.0000078702.79393.9b

    PubMed  Google Scholar 

  • Klapp ST (1979) Doing two things at once: the role of temporal compatibility. Mem Cognit 7:375–381

    Article  Google Scholar 

  • Koch I, Gade M, Philipp AM (2004) Inhibition of response mode in task switching. Exp Psychol 51:52–58

    Article  PubMed  Google Scholar 

  • Kunde W, Weigelt M (2005) Goal congruency in bimanual object manipulation. J Exp Psychol Hum Percept Perform 31:145–156. doi:10.1037/0096-1523.31.1.145

    Article  PubMed  Google Scholar 

  • Larson EB, Burnison DS, Brown WS (2002) Callosal function in multiple sclerosis: bimanual motor coordination. Cortex 38:201–214

    Article  PubMed  Google Scholar 

  • Liefooghe B, Barrouillet P, Vandierendonck A, Camos V (2008) Working memory costs of task switching. J Exp Psychol Learn Mem Cogn 34:478–494. doi:10.1037/0278-7393.34.3.478

    Article  PubMed  Google Scholar 

  • Marteniuk RG, MacKenzie CL, Baba DM (1984) Bimanual movement control: information processing and interaction effects. Q J Exp Psychol A Hum Exp Psychol 36A:335–365

    Article  Google Scholar 

  • Mayr U, Keele SW (2000) Changing internal constraints on action: the role of backward inhibition. J Exp Psychol Gen 129:4–26

    Article  PubMed  CAS  Google Scholar 

  • McVea DA, Taylor AJ, Pearson KG (2009) Long-lasting working memories of obstacles established by foreleg stepping in walking cats require area 5 of the posterior parietal cortex. J Neurosci 29:9396–9404. doi:10.1523/JNEUROSCI.0746-09.2009

    Article  PubMed  CAS  Google Scholar 

  • Mechsner F (2004) A psychological approach to human voluntary movement. J Mot Behav 36:355–370

    Article  PubMed  Google Scholar 

  • Mechsner F, Kerzel D, Knoblich G, Prinz W (2001) Perceptual basis of bimanual coordination. Nature 414:69–73. doi:10.1038/35102060

    Article  PubMed  CAS  Google Scholar 

  • Monsell S (2003) Task switching. Trends Cogn Sci 7:134–140

    Article  PubMed  Google Scholar 

  • Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113

    Article  PubMed  CAS  Google Scholar 

  • Peper CE, Carson RG (1999) Bimanual coordination between isometric contractions and rhythmic movements: an asymmetric coupling. Exp Brain Res 129:417–432

    Article  PubMed  CAS  Google Scholar 

  • Peters M (1985) Constraints in the performance of bimanual tasks and their expression in unskilled and skilled subjects. Q J Exp Psychol A Hum Exp Psychol 37:171–196

    Article  Google Scholar 

  • Reis J, Schambra HM, Cohen LG, Buch ER, Fritsch B, Zarahn E, Celnik PA, Krakauer JW (2009) Noninvasive cortical stimulation enhances motor skill acquisition over multiple days through an effect on consolidation. Proc Natl Acad Sci USA 106:1590–1595. doi:10.1073/pnas.0805413106

    Article  PubMed  CAS  Google Scholar 

  • Reisman DS, Block HJ, Bastian AJ (2005) Interlimb coordination during locomotion: what can be adapted and stored? J Neurophysiol 94:2403–2415. doi:10.1152/jn.00089.2005

    Article  PubMed  Google Scholar 

  • Remy F, Wenderoth N, Lipkens K, Swinnen SP (2010) Dual-task interference during initial learning of a new motor task results from competition for the same brain areas. Neuropsychologia 48:2517–2527. doi:10.1016/j.neuropsychologia.2010.04.026

    Article  PubMed  Google Scholar 

  • Rieger M, Verwey WB, Massen C (2008) The effect of continuous, nonlinearly transformed visual feedback on rapid aiming movements. Exp Brain Res 191:1–12. doi:10.1007/s00221-008-1505-7

    Article  PubMed  Google Scholar 

  • Riek S, Woolley D (2005) Hierarchical organisation of neuro-anatomical constraints in interlimb coordination. Hum Mov Sci 24:798–814. doi:10.1016/j.humov.2005.10.002

    Article  PubMed  Google Scholar 

  • Rogers RD, Monsell S (1995) Costs of a predictable switch between simple cognitive tasks. J Exp Psychol Gen 124:207–231. doi:10.1037/0096-3445.124.2.207

    Article  Google Scholar 

  • Rubinstein JS, Meyer DE, Evans JE (2001) Executive control of cognitive processes in task switching. J Exp Psychol Hum Percept Perform 27:763–797

    Article  PubMed  CAS  Google Scholar 

  • Schambra HM, Abe M, Luckenbaugh DA, Reis J, Krakauer JW, Cohen LG (2011) Probing for hemispheric specialization for motor skill learning: a transcranial direct current stimulation study. J Neurophysiol 106:652–661. doi:10.1152/jn.00210.2011

    Article  PubMed  Google Scholar 

  • Schmidt R, Lee T (2005) Motor control and learning: a behavioral emphasis, 4th edn. Human Kinetics, Champaign

    Google Scholar 

  • Schuch S, Koch I (2003) The role of response selection for inhibition of task sets in task shifting. J Exp Psychol Hum Percept Perform 29:92–105

    Article  PubMed  Google Scholar 

  • Scott Kelso JA, Putnam CA, Goodman D (1983) On the space-time structure of human interlimb co-ordination. Q J Exp Psychol A Hum Exp Psychol 35A:347–375

    Article  Google Scholar 

  • Serrien DJ (2008) Coordination constraints during bimanual versus unimanual performance conditions. Neuropsychologia 46:419–425. doi:10.1016/j.neuropsychologia.2007.08.011

    Article  PubMed  Google Scholar 

  • Serrien DJ (2009) Interactions between new and pre-existing dynamics in bimanual movement control. Exp Brain Res 197:269–278. doi:10.1007/s00221-009-1910-6

    Article  PubMed  Google Scholar 

  • Shadmehr R, Mussa-Ivaldi FA (1994) Adaptive representation of dynamics during learning of a motor task. J Neurosci 14:3208–3224

    PubMed  CAS  Google Scholar 

  • Spijkers W, Heuer H (1995) Structural constraints on the performance of symmetrical bimanual movements with different amplitudes. Q J Exp Psychol A Hum Exp Psychol 48A:716–740

    Article  Google Scholar 

  • Spijkers W, Heuer H, Kleinsorge T, van der Loo H (1997) Preparation of bimanual movements with same and different amplitudes: specification interference as revealed by reaction time. Acta Psychol 96:207–227. doi:10.1016/S0001-6918(97)00017-6

    Article  Google Scholar 

  • Steglich C, Heuer H, Spijkers W, Kleinsorge T (1999) Bimanual coupling during the specification of isometric forces. Exp Brain Res 129:302–316

    Article  PubMed  CAS  Google Scholar 

  • Stucchi N, Viviani P (1993) Cerebral dominance and asynchrony between bimanual two-dimensional movements. J Exp Psychol Hum Percept Perform 19:1200–1220

    Article  PubMed  CAS  Google Scholar 

  • Summers J (2002) Practice and training in bimanual coordination tasks: strategies and constraints. Brain Cogn 48:166–178. doi:10.1006/brcg.2001.1311

    Article  PubMed  Google Scholar 

  • Summers JJ, Rosenbaum DA, Burns BD, Ford SK (1993) Production of polyrhythms. J Exp Psychol Hum Percept Perform 19:416–428. doi:10.1037/0096-1523.19.2.416

    Article  PubMed  CAS  Google Scholar 

  • Sun FT, Miller LM, Rao AA, D’Esposito M (2007) Functional connectivity of cortical networks involved in bimanual motor sequence learning. Cereb Cortex 17:1227–1234. doi:10.1093/cercor/bhl033

    Article  PubMed  Google Scholar 

  • Swinnen SP, Wenderoth N (2004) Two hands, one brain: cognitive neuroscience of bimanual skill. Trends Cogn Sci 8:18–25

    Article  PubMed  Google Scholar 

  • Swinnen SP, Walter CB, Lee TD, Serrien DJ (1993) Acquiring bimanual skills: contrasting forms of information feedback for interlimb decoupling. J Exp Psychol Learn Mem Cogn 19:1328–1344

    Article  PubMed  CAS  Google Scholar 

  • Swinnen SP, Jardin K, Meulenbroek R (1996) Between-limb asynchronies during bimanual coordination: effects of manual dominance and attentional cueing. Neuropsychologia 34:1203–1213

    Article  PubMed  CAS  Google Scholar 

  • Swinnen SP, Lee TD, Verschueren S, Serrien DJ, Bogaerds H (1997) Interlimb coordination: learning and transfer under different feedback conditions. Hum Mov Sci 16:749–785. doi:10.1016/S0167-9457(97)00020-1

    Article  Google Scholar 

  • Tsutsui S, Lee TD, Hodges NJ (1998) Contextual interference in learning new patterns of bimanual coordination. J Mot Behav 30:151–157. doi:10.1080/00222899809601332

    Article  PubMed  CAS  Google Scholar 

  • Wenderoth N, Debaere F, Sunaert S, van Hecke P, Swinnen SP (2004) Parieto-premotor areas mediate directional interference during bimanual movements. Cereb Cortex 14:1153–1163. doi:10.1093/cercor/bhh075

    Article  PubMed  Google Scholar 

  • White O, Diedrichsen J (2010) Responsibility assignment in redundant systems. Curr Biol 20:1290–1295. doi:10.1016/j.cub.2010.05.069

    Article  PubMed  CAS  Google Scholar 

  • Wood CA, Ging CA (1991) The role of interference and task similarity on the acquisition, retention, and transfer of simple motor skills. Res Q Exerc Sport 62:18–26

    Article  PubMed  CAS  Google Scholar 

  • Zaal FT, Bingham GP, Schmidt RC (2000) Visual perception of mean relative phase and phase variability. J Exp Psychol Hum Percept Perform 26:1209–1220

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Erik Hoyer is supported by the Rehabilitation Medicine Scientist Training Program (RMSTP; 5K12HD001097). Amy Bastian is supported by R01HD040289 and R01HD048741.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik H. Hoyer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoyer, E.H., Bastian, A.J. The effects of task demands on bimanual skill acquisition. Exp Brain Res 226, 193–208 (2013). https://doi.org/10.1007/s00221-013-3425-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-013-3425-4

Keywords

Navigation