Skip to main content
Log in

Higgs Bundles and (A, B, A)-Branes

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Through the action of anti-holomorphic involutions on a compact Riemann surface Σ we construct families of (A, B, A)-branes \({\mathcal{L}_{G_{c}}}\) in the moduli spaces \({\mathcal{M}_{G_{c}}}\) of G c -Higgs bundles on Σ. We study the geometry of these (A, B, A)-branes in terms of spectral data and show they have the structure of real integrable systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atiyah M.: Riemann surfaces and spin structures. Ann. Sci. École Norm. Sup. 4, 47–62 (1971)

    MATH  MathSciNet  Google Scholar 

  2. Atiyah M.F., Bott R.: Yang-Mills equations over Riemann surfaces. Philos. Trans. R. Soc. Lond. A 308, 523–615 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  3. Baraglia, D., Schaposnik, L.P.: Real structures on moduli spaces of Higgs bundles. Adv. Theor. Math. Phys. (2014, to appear). arXiv:1309.1195

  4. Biswas I., Gómez T.L.: Connections and Higgs fields on a principal bundle. Ann. Glob. Anal. Geom. 33(1), 19–46 (2008)

    Article  MATH  Google Scholar 

  5. Broughton S.A., Bujalance E., Costa A.F., Gamboa J.M., Gromadzki G.: Symmetries of Accola-Maclachlan and Kulkarni surfaces. Proc. Am. Math. Soc. 127, 637–646 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bujalance E., Cirre J., Gamboa J.M., Gromadzki G.: Symmetry types of hyperelliptic Riemann surfaces. Memoires de la Societe Mathematique de France 86, 1–122 (2001)

    Google Scholar 

  7. Beauville A., Narasimhan M.S., Ramanan S.: Spectral curves and the generalised theta divisor. J. Reine Angew. Math. 398, 169–179 (1989)

    MATH  MathSciNet  Google Scholar 

  8. Corlette K.: Flat G-bundles with canonical metrics. J. Differ. Geom. 28, 361–382 (1988)

    MATH  MathSciNet  Google Scholar 

  9. Donaldson S.K.: Twisted harmonic maps and the self-duality equations. Proc. Lond. Math. Soc. (3) 55(1), 127–131 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  10. Gross B.H., Harris J.: Real algebraic curves. Ann. Sci. École Norm. Sup. (4) 14(2), 157–182 (1981)

    MATH  MathSciNet  Google Scholar 

  11. Goldman W.M.: The symplectic nature of fundamental groups of surfaces. Adv. Math. 54, 200–225 (1984)

    Article  MATH  Google Scholar 

  12. Gukov, S.: Surface operators and knot homologies. In: New Trends in Mathematical Physics, pp. 313–343 (2009)

  13. Hausel T., Thaddeus M.: Mirror symmetry, Langlands duality, and the Hitchin system. Invent. Math. 153, 197–229 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  14. Hitchin N.J.: The self-duality equations on a Riemann surface. Proc. LMS 55(3), 59–126 (1987)

    MATH  MathSciNet  Google Scholar 

  15. Hitchin N.J.: Stable bundles and integrable systems. Duke Math. J. 54(1), 91–114 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  16. Hitchin N.J.: Lie groups and Teichmüller space. Topology 31(3), 449–473 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  17. Hitchin N.J.: Langlands duality and G2 spectral curves. Q. J. Math. 58, 319–344 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  18. Huybrechts D.: Fourier-Mukai transforms in algebraic geometry. Oxford University Press, Oxford (2006)

    Book  MATH  Google Scholar 

  19. Kalliongis J., McCullough D.: Orientation-reversing involutions on handlebodies. Trans. AMS 348(5), 1739–1755 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  20. Kapustin A., Witten E.: Electric-magnetic duality and the geometric Langlands program. Commun. Number Theory Phys. 1, 1–236 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  21. Moerdijk I., Mrčun J.: Introduction to foliations and Lie groupoids. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  22. Ramanathan A.: Stable principal bundles on a compact Riemann surface. Math. Ann. 213, 129–152 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  23. Schaposnik, L.P.: Monodromy of the SL2 Hitchin fibration. Int. J. Math. 24 (2013)

  24. Schaposnik L.P.: Spectral data for G-Higgs bundles. University of Oxford, Oxford (2013)

    Google Scholar 

  25. Seppälä M.: Moduli spaces of stable real algebraic curves. Ann. Sci. École Norm. Sup. (4) 24(5), 519–544 (1991)

    MATH  Google Scholar 

  26. Simpson C.T.: Constructing variations of Hodge structure using Yang-Mills theory and applications to uniformisation. J. AMS 1, 867–918 (1988)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura P. Schaposnik.

Additional information

Communicated by N. A. Nekrasov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baraglia, D., Schaposnik, L.P. Higgs Bundles and (A, B, A)-Branes. Commun. Math. Phys. 331, 1271–1300 (2014). https://doi.org/10.1007/s00220-014-2053-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-014-2053-6

Keywords

Navigation