Skip to main content

Advertisement

Log in

Towards modelling of fluid flow and food breakage by the teeth in the oral cavity using smoothed particle hydrodynamics (SPH)

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

The mechanical functions of the oral cavity, such as chewing and swallowing, present many modelling challenges. Plastic strain and fracturing occur in food due to interactions with hard and soft tissues, whilst the food moves, collides and mixes with fluid. Smoothed particle hydrodynamics (SPH) is a meshless numerical method that uses particles instead of meshes to discretise material. The Lagrangian nature of SPH means that it is well suited to modelling complexities such as fluid-free surfaces or solid fracture, interactions with complicated deforming boundaries, and temperature and chemical dynamics. We propose a combined SPH–biomechanical model of the oral cavity and present five model applications that address a broad range of material behaviours observed during eating. Interactions between the gums, teeth and the moving tongue with fluids in the anterior oral cavity; biting and chewing of elastoplastic foods; and biting and crushing of brittle foods are each simulated. In each case, the proposed meshless SPH–biomechanical model was found to be well suited to modelling the complex motions, boundary interactions and material responses. The modelling framework shows promise as a tool for simulation of food breakdown and taste release for foods of different material behaviours.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Agrawal KR, Lucas PW, Prinz JF, Bruce IC (1997) Mechanical properties of foods responsible for resisting food breakdown in the human mouth. Arch Oral Biol 42:1–9

    Article  CAS  Google Scholar 

  2. Agrawal KR, Lucas PW, Bruce IC (2000) The effects of food fragmentation index on mandibular closing angle in human mastication. Arch Oral Biol 45:577–584

    Article  CAS  Google Scholar 

  3. Amemiya K, Hisano M, Ishida T, Soma K (2002) Relationship between The flow of bolus and occlusal condition during mastication: computer simulation based on the measurement of characteristics of the bolus. J Oral Rehab 29(3):245–256. doi:10.1046/j.1365-2842.2002.00910.x

    Article  CAS  Google Scholar 

  4. Autodesk Maya™ software (Autodesk Inc., San Rafael, CA, USA)

  5. Batchelor GK (1973) An introduction to fluid dynamics. Cambridge University Press, Cambridge

    Google Scholar 

  6. Benz W, Asphaug E (1994) Impact simulations with fracture. I. Method and Tests. Icarus 107(1):98–116

    Article  Google Scholar 

  7. Bhatka R, Throckmorton GS, Wintergerst AM, Hutchins B, Buschang PH (2004) Bolus size and unilateral chewing cycle kinematics. Arch Oral Biol 49(7):559–566

    Article  CAS  Google Scholar 

  8. Blissett A, Peinz JF, Wulfert F, Taylor AJ, Hort J (2007) Effect of bolus size on chewing, swallowing, oral soft tissue and tongue movement. J Oral Rehabil 34:572–582

    Article  CAS  Google Scholar 

  9. Bower AF (2009) Applied mechanics of solids. CRC Press, p 562

  10. Breuil P, Meullenet J-F (2001) A Comparison of three instrumental tests for predicting sensory texture profiles of cheese. J Texture Stud 32:41–55

    Article  Google Scholar 

  11. Brown WE, Eves D, Ellison M, Braxton D (1998) Use of combined electromyography and kinesthesiology during mastication to chart the oral breakdown of foodstuffs: relevance to measurement of food texture. J Texture Stud 29(2):145–167. doi:10.1111/j.1745-4603.1998.tb00161.x

    Article  Google Scholar 

  12. Campanella OH, Peleg M (1987) Lubricated squeezing flow of a Newtonian liquid between elastic and rigid plates. Rheol Acta, vol 26

  13. Chen J (2009) Food oral processing: a review. Roy Soc Ch 23:1–25

    Google Scholar 

  14. Chen JK, Beraun JE, Jih CJ (2001) A corrective smoothed particle method for transient elastoplastic dynamics. Comput Mech 27(3):177–187. doi:10.1007/s004660100236

    Article  CAS  Google Scholar 

  15. Cleary PW (1998) Modelling confined multi-material heat and mass flows using SPH. Appl Math Model 22(12):981–993

    Article  Google Scholar 

  16. Cleary PW (2010) Elastoplastic deformation during projectile–wall collision. Appl Math Model 34:266–283

    Article  Google Scholar 

  17. Cleary PW, Monaghan JJ (1999) Conduction modelling using smoothed particle hydrodynamics. J Comput Phys 148:227–264

    Google Scholar 

  18. Cleary PW, Das R (2008) The potential for SPH modelling of solid deformation and fracture. In: Reddy BD (ed) IUTAM symposium on theoretical, computational and modelling aspects of inelastic media, vol 11. IUTAM Bookseries. Springer, Netherlands, pp 287–296. doi:10.1007/978-1-4020-9090-5_26

  19. Cleary PW, Prakash M (2004) Discrete-element modelling and smoothed particle hydrodynamics: potential in the environmental sciences. Phil Trans R Soc Lond A 362:2003–2030

    Article  Google Scholar 

  20. Cleary PW, Ha J, Ahuja V (2000) High pressure dies casting simulation using Smoothed Particle Hydrodynamics. J Cast Metals Res 12:335–355

    Google Scholar 

  21. Cleary PW, Prakash M, Ha J, Sinnott M, Nguyen T, Grandfield J (2004) Modeling of cast systems using smoothed-particle hydrodynamics. JOM-J Min Met Mat S 56(3):67–70. doi:10.1007/s11837-004-0038-1

    Article  CAS  Google Scholar 

  22. Cleary PW, Ha J, Prakash M, Nguyen T (2006) 3D SPH flow predictions and validation for high pressure die casting of automotive components. Appl Math Model 30(11):1406–1427

    Article  Google Scholar 

  23. Cleary PW, Prakash M, Ha J (2006) Novel applications of smoothed particle hydrodynamics (SPH) in metal forming. J Mater Process Tech 177(1–3):41–48

    Article  CAS  Google Scholar 

  24. Cleary PW, Prakash M, Ha J, Stokes N, Scott C (2007a) Smooth particle hydrodynamics: status and future potential. Prog Comput Fluid Dy 7 (2/3/4):70–90

    Google Scholar 

  25. Cleary PW, Pyo SH, Prakash M, Koo BK (2007) Bubbling and frothing liquids. ACM Trans Graph 26:97

    Article  Google Scholar 

  26. Cohen RCZ, Cleary PW, Mason BR (2012) Simulations of dolphin kick swimming using smoothed particle hydrodynamics. Hum Mov Sci 31(3):604–619

    Article  Google Scholar 

  27. Colagrossi A, Landrini M (2003) Numerical simulation of interfacial flows by smoothed particle hydrodynamics. J Comput Phys 191:448–475

    Article  Google Scholar 

  28. Crespo AJC, Gómez-Gesteira M, Dalrymple RA (2007) 3D SPH simulation of large waves mitigation with a dike. J Hydraul Res 45:631–642

    Article  Google Scholar 

  29. Cummins SJ, Silvester TB, Cleary PW (2012) Three-dimensional wave impact on a rigid structure using smoothed particle hydrodynamics. Int J Num Meth Fluid 68:1471–1496

    Article  Google Scholar 

  30. Dan H, Kohyama K (2007) Interactive relationship between the mechanical properties of food and the human response during the first bite. Arch Oral Biol 52(5):455–464

    Article  Google Scholar 

  31. Das R, Cleary PW (2010) Effect of rock shapes on brittle fracture using Smoothed Particle Hydrodynamics. Theor Appl Fract Mec 53:47–60

    Article  Google Scholar 

  32. Das R, Cleary PW (2013) A mesh-free approach for fracture modelling of gravity dams under earthquake. Int J Fract 179:9–33

    Article  Google Scholar 

  33. Das R, Cleary PW (2013b) Simulation of uniaxial compression tests and stress wave propagation using smoothed particle hydrodynamics. Int J Numer Anal Met (under review)

  34. Das AK, Das PK (2009) Bubble evolution through submerged orifice using smoothed particle hydrodynamics: basic formulation and model validation. Chem Eng Sci 64:2281–2290

    Article  CAS  Google Scholar 

  35. Day L, Xu M, Øiseth S, Hemar Y, Lundin L (2010) Control of morphological and rheological properties of carrot cell wall particle dispersions through processing. Food Bioprocess Technol 3:928–934

    Article  Google Scholar 

  36. De Leffe M, Le Touzé D, Alessandrini B (2010) SPH modeling of shallow-water coastal flows. J Hydraul Res 48:118–125

    Article  Google Scholar 

  37. De Loubens C, Panouillé M, Saint-Eve A, Déléris I, Tréléa IC, Souchon I (2011) Mechanistic model of in vitro salt release from model dairy gels based on standardized breakdown test simulating mastication. J Food Eng 105:161–168

    Article  Google Scholar 

  38. de Roos KB (2003) Effect of texture and microstructure on flavour retention and release. Int Dairy J 13:593–605

    Article  Google Scholar 

  39. Dejak B, Mlotkowski A, Romanowicz M (2003) Finite element analysis of stresses in molars during clenching and mastication. J Prosthet Dent 90(6):591–597

    Article  Google Scholar 

  40. Dickie AM, Kokini JL (1983) An improved model for food thickness from non-Newtonian fluid mechanics in the mouth. J Food Sci 48(1):57–61

    Article  Google Scholar 

  41. Drewnowski A, Shrager EE, Lipsky C, Stellar E, Greenwood MRC (1989) Sugar and fat: sensory and hedonic evaluation of liquid and solid foods. Physio Behav 45(1):177–183

    Article  CAS  Google Scholar 

  42. Ellero M, Kröger M, Hess S (2002) Viscoelastic flows studied by smoothed particle dynamics. J Non-Newton Fluid 105(1):35–51

    Article  CAS  Google Scholar 

  43. Frank D, Appelqvist I, Piyasiri U, Wooster TJ, Delahunty C (2011) Proton transfer reaction mass spectrometry and time intensity perceptual measurement of flavour release from lipid emulsions using trained human subjects. J Agric Food Chem 59:4891–4903

    Article  CAS  Google Scholar 

  44. Frank DC, Eyres GT, Piyasiri U, Delahunty CM (2012) Effect of food matrix structure and composition on aroma release during oral processing using in vivo monitoring. Flavour Fragr J 27:433–444

    Article  CAS  Google Scholar 

  45. Gerard JM, Ohayon J, Luboz V, Perrier P, Payan Y (2005) Non-linear elastic properties of the lingual and facial tissues assessed by indentation technique: application to the biomechanics of speech production. Med Eng Phys 27:884–892

    Article  CAS  Google Scholar 

  46. Gomez-Gesteira M, Rogers BD, Dalrymple RA, Crespo AJC (2010) State-of-the-art of classical SPH for free-surface flows. J Hydraul Res 48:6–27

    Article  Google Scholar 

  47. Grady DE, Kipp ME (1980) Continuum modelling of explosive fracture in oil shale. Int J Rock Mech Min 17(3):147–157

    Article  Google Scholar 

  48. Gray JP, Monaghan JJ, Swift RP (2001) SPH elastic dynamics. Comput Methods Appl Mech Eng 190(49–50):6641–6662

    Article  Google Scholar 

  49. Guzel BU, Prakash M, Semercigil E, Turan O (2005) Energy dissipation with sloshing for absorber design. ASME conference proceedings 2005 (42169):1807–1814

  50. Ha J, Cleary PW (2000) Comparison of SPH simulations of high pressure die casting with the experiments and VOF simulations of Schmid and Klein. Int J Cast Metal Res 12:409–418

    Google Scholar 

  51. Harrison M, Campbell S, Hills BP (1998) Computer simulation of flavour release from solid foods in the mouth. J Agric Food Chem 46:2736–2743

    Article  CAS  Google Scholar 

  52. Hiiemae KM, Palmer JB (2003) Tongue movements in feeding and speech. Crit Rev Oral Biol M 14(6):413–429. doi:10.1177/154411130301400604

    Article  Google Scholar 

  53. Hiiemae K, Heath MR, Heath G, Kazazoglu E, Murray J, Sapper D, Hamblett K (1996) Natural bites, food consistency and feeding behaviour in man. Arch Oral Biol 41:175–189

    Article  CAS  Google Scholar 

  54. Hills BP, Harrison M (1995) Two-film theory of flavour release from solids. Int J Food Sci Technol 30:425–436

    Article  CAS  Google Scholar 

  55. Hilton JE, Cleary PW (2012) A multiscale method for geophysical flow events. J Multiscale Comp Eng 10(4):375–390

    Article  Google Scholar 

  56. Huang Y, White DP, Malhotra A (2007) Use of computational modelling to predict responses to upper airway surgery in obstructive sleep Apnea. Laryngoscope 117:648–653

    Article  Google Scholar 

  57. Hutchinson RJ, Simms I, Smith AC (1988) Anisotropy in the mechanical properties of extrusion cooked maize foams. J Mater Sci Lett 7:666–668

    Article  Google Scholar 

  58. Johnsen SE, Trulsson M (2005) Encoding of amplitude and rate of tooth loads by human periodontal afferents from premolar and molar teeth. J Neurophysiol 93:1889–1897

    Google Scholar 

  59. Khan AA, Vincent JFV (1993) Anisotropy in the fracture properties of apple flesh as investigated by crack-opening tests. J Mater Sci 28:45–51

    Article  Google Scholar 

  60. Kohyama K, Nishi M (1997) Direct measurement of biting pressures for crackers using a multiple-point sheet sensor. J Texture Stud 28(6):605–617. doi:10.1111/j.1745-4603.1997.tb00141.x

    Article  Google Scholar 

  61. Kohyama K, Hatakeyama E, Dan H, Sasaki T (2005) Effects of sample thickness on bite force for raw carrots and fish gels. J Texture Stud 36(2):157–173. doi:10.1111/j.1745-4603.2005.00009.x

    Article  Google Scholar 

  62. Kokini JL, Kadane JB, Cussler EL (1977) Liquid texture perceived in the mouth. J Texture Stud 8(2):195–218

    Article  Google Scholar 

  63. Koolstra JH, van Eijden TMGJ (2005) Combined finite-element and rigid-body analysis of human jaw joint dynamics. J Biomech 38(12):2431–2439

    Article  CAS  Google Scholar 

  64. Korioth TWP, Romilly DP, Hannam AG (1992) Three-dimensional finite element stress analysis of the dentate human mandible. Am J Phys Anthropol 88(1):69–96

    Article  CAS  Google Scholar 

  65. Lassauzay C, M-As Peyron, Albuisson E, Dransfield E, Woda A (2000) Variability of the masticatory process during chewing of elastic model foods. Eur J Oral Sci 108(6):484–492

    Article  CAS  Google Scholar 

  66. Lauverjat C, Déléris I, Tréléa IC, Salles C, Souchon I (2009) Salt and Aroma compound release in model cheeses in relation to their mobility. J Agric Food Chem 57:9878–9887

    Article  CAS  Google Scholar 

  67. Lepley C, Throckmorton G, Parker S, Buschang PH (2009) Masticatory performance and chewing cycle kinematics: are they related? Angle Orthod 80(2):295–301. doi:10.2319/061109-333.1

    Article  Google Scholar 

  68. Libersky L, Petschek A (1991) Smooth particle hydrodynamics with strength of materials. In: Trease H, Fritts M, Crowley W (eds) Advances in the free-Lagrange method including contributions on adaptive gridding and the smooth particle hydrodynamics method, vol 395. Lecture Notes in Physics. Springer, Berlin, pp 248–257. doi: 10.1007/3-540-54960-9_58

  69. Limido J, Espinosa C, Salaün M, Lacome JL (2007) SPH method applied to high speed cutting modelling. Int J Mech Sci 49:898–908

    Article  Google Scholar 

  70. Liu MB, Liu GR, Lam KY, Zong Z (2003) Smoothed particle hydrodynamics for numerical simulation of underwater explosion. Comput Mech 30(2):106–118. doi:10.1007/s00466-002-0371-6

    Article  CAS  Google Scholar 

  71. Lucas PW, Luke DA (1986) Is food particle size a criterion for the initiation of swallowing? J Oral Rehabil 13:127–136

    Article  CAS  Google Scholar 

  72. Lucas PW, Ow RKK, Ritchie GM, Chew CL, Keng SB (1986) Relationship between jaw movement and food breakdown in human mastication. J Dental Res 65:400–404

    Article  CAS  Google Scholar 

  73. Mathmann K, Kowalczyk W, Delgado A (2009) Development of a hybrid model predicting the mouthfeel of yogurt. J Texture Stud 40:16–35

    Article  Google Scholar 

  74. Melosh HJ, Ryan EV, Asphaug E (1992) Dynamic fragmentation in impacts: hydrocode simulation of laboratory impacts. J Geophys Res 97:14735–14759

    Article  Google Scholar 

  75. Mioche L, Hiiemae KM, Palmer JB (2002) A postero-anterior videofluorographic study of the intra-oral management of food in man. Arch Oral Biol 47:267–280

    Article  Google Scholar 

  76. Monaghan JJ (1994) Simulating free surface flows with SPH. J Comput Phys 110(2):399–406

    Article  Google Scholar 

  77. Monaghan JJ (2000) SPH without a tensile instability. J Comput Phys 159(2):290–311

    Article  Google Scholar 

  78. Monaghan JJ (2005) Smoothed particle hydrodynamics. Rep Prog Phys 68:1703–1759

    Article  Google Scholar 

  79. Nicosia MA, Robbins J (2001) The fluid mechanics of bolus ejection from the oral cavity. J Biomech 34(12):1537–1544

    Article  CAS  Google Scholar 

  80. Oger G, Doring M, Alessandrini B, Ferrant P (2006) Two-dimensional SPH simulations of wedge water entries. J Comput Phys 213:803–822

    Article  Google Scholar 

  81. Palmer JB, Hiiemae KM, Liuf J (1997) Tongue-jaw linkages in human feeding: a preliminary videofluorographic study. Arch Oral Biol 42:429–441

    Article  CAS  Google Scholar 

  82. Peng C-L, Jost-Brinkmann P-G, Yoshida N, Chou H-H, Lin C-T (2004) Comparison of tongue functions between mature and tongue-thrust swallowing: an ultrasound investigation. Am J Orthod Dentof Ac 125:562–570

    Article  Google Scholar 

  83. Peyron M-A, Mioche L, Renon P, Abouelkaram S (1996) Masticatory jaw movement recordings: a new method to investigate food texture. Food Qual Prefer Second Rose Marie Pangborn Memorial Symposium 7(3–4):229–237

    Google Scholar 

  84. Peyron M-A, Mishellany A, Woda A (2004) Particle size distribution of food boluses after mastication of six natural foods. J Dent Res 83:578–582

    Article  Google Scholar 

  85. Prakash M, Cleary PW, Ha J, Noui-Mehidi MN, Blackburn HM (2007a) Simulation of suspension of solids in a liquid in a mixing tank using SPH and comparison with physical modelling experiments. Prog Comput Fluid Dy 7 (2/3/4):91–100

    Google Scholar 

  86. Prakash M, Cleary PW, Grandfield J, Rohan P, Nguyen V (2007) Optimisation of ingot casting wheel design using SPH simulations. Prog Comput Fluid Dy 7(2–4):101–110

    Article  Google Scholar 

  87. Rantonen PJF, Meurman JH (1998) Viscosity of whole saliva. Acta Odontol Scand 56:210–214

    Article  CAS  Google Scholar 

  88. Robinson M, Cleary PW, Monaghan J (2008) Analysis of mixing in a Twin Cam mixer using smoothed particle hydrodynamics. Am Inst Chem Eng J (AICheJ) 54:1987–1998

    Article  CAS  Google Scholar 

  89. Röhrle O, Pullan AJ (2007) Three-dimensional finite element modelling of muscle forces during mastication. J Biomech 40(15):3363–3372

    Article  Google Scholar 

  90. Rudman M, Cleary PW, Prakash M (2009) Simulation of liquid sloshing in a model LNG tank using smoothed particle hydrodynamics. Int J Offshore Polar 19(4):286–294

    Google Scholar 

  91. Souto Iglesias A, Pérez Rojas L, Zamora Rodríguez R (2004) Simulation of anti-roll tanks and sloshing type problems with smoothed particle hydrodynamics. Ocean Eng 31:1169–1192

    Article  Google Scholar 

  92. Stellingwerf RF, Wingate CA (1993) Impact modeling with smooth particle hydrodynamics. Int J Impact Eng 14(1–4):707–718

    Article  Google Scholar 

  93. Stone M, Davis EP, Douglas AS, NessAiver M, Gullapalli R, Levine WS, Lundberg A (2001) Modeling the motion of the internal tongue from tagged cine-MRI images. J Acoust Soc Am 109:2974–2982

    Google Scholar 

  94. Sun Y, Xu WL (2010) Simulation of food mastication based on discrete element method. Int J Comput Appl T 39 (1/2/3):3–11

    Google Scholar 

  95. Swegle JW, Attaway SW (1995) On the feasibility of using Smoothed Particle Hydrodynamics for underwater explosion calculations. Comput Mech 17(3):151–168. doi:10.1007/bf00364078

    Article  Google Scholar 

  96. Taylor AJ (2002) Release and transport of flavours in vivo: physicochemical, physiological, and perceptual considerations. Compr Rev Food Sci Food Saf 1:45–57

    Article  CAS  Google Scholar 

  97. Tetko IV, Gasteiger J, Todeschini R, Mauri A, Livingstone D, Ertl P, Palyulin VA, Radchenko EV, Zefirov NS, Makarenko AS, Tanchuk VY, Prokopenko VV (2005) Virtual computational chemistry laboratory: design and description. J Comput Aid Mol Des 19:453–463

    Article  CAS  Google Scholar 

  98. Ubbink J, Burbidge A, Mezzenga R (2008) Food structure and functionality: a soft matter perspective. Soft Matter 4:1569–1581

    Article  CAS  Google Scholar 

  99. Van Der Bilt A, Tekamp A, Van Der Glas H, Abbink J (2008) Bite force and electromyograpy during maximum unilateral and bilateral clenching. Eur J Oral Sci 116:217–222

    Article  Google Scholar 

  100. van Hecke E, Allaf K, Bouvier JM (1995) Texture and structure of crispy-puffed food products I: mechanical properties in bending. J Texture Stud 26:11–25

    Article  Google Scholar 

  101. Wilkins ML (1964) Calculation of elastic-plastic flow. In: Methods of computational physics, vol 8. Academic Press, New York, pp 211–263

  102. Wilkinson C, Dijksterhuis GB, Minekus M (2000) From food structure to texture. Trends Food Sci Tech 11(12):442–450

    Article  CAS  Google Scholar 

  103. Williams SH, Wright BW, Truong V, Daubert CR, Vinyard CJ (2005) Mechanical properties of foods used in experimental studies of primate masticatory function. Am J Primatol 67(3):329–346

    Article  Google Scholar 

  104. Wium H, Qvist KB, Gross M (1997) Uniaxial compression of UF-Feta cheese related to sensory texture analysis. J Texture Stud 28:455–476

    Article  Google Scholar 

  105. Xu X, Yuan S (2011) An examination of the force generated from incisor penetration into foods with different textural properties part I: experimental observation. J Texture Stud 42(3):228–235. doi:10.1111/j.1745-4603.2011.00295.x

    Article  CAS  Google Scholar 

  106. Yashiro K, Takada K (2005) Model-based analysis of jaw-movement kinematics using jerk-optimal criterion: simulation of human chewing cycles. J Electromyogr Kines 15(5):516–526

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the support, many helpful discussions and manuscript review by Leif Lundin, Conor Delahunty and Graham Eyres. Matthew Bolger and Fletcher Woolard are gratefully acknowledged for assistance with data processing and visualisation.

Conflict of interest

None.

Compliance with Ethics Requirements

This article does not contain any studies with human or animal subjects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon M. Harrison.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harrison, S.M., Cleary, P.W. Towards modelling of fluid flow and food breakage by the teeth in the oral cavity using smoothed particle hydrodynamics (SPH). Eur Food Res Technol 238, 185–215 (2014). https://doi.org/10.1007/s00217-013-2077-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-013-2077-8

Keywords

Navigation