Skip to main content

Advertisement

Log in

Protein analysis of laser capture micro-dissected tissues revealed cell-type specific biological functions in developing barley grains

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Both the nucellar projection (NP) and endosperm transfer cells (ETC) of the developing barley grain (harvested 8 days after flowering) were isolated by laser capture micro-dissection combined with pressure catapulting. Protein extracts were analyzed by nanoUPLC separation combined with ESI-Q-TOF mass spectrometry. The majority of the ∼160 proteins identified were involved in translation, protein synthesis, or protein destination. The NP proteome was enriched for stress defense molecules, while proteins involved in assimilate transport and the mobilization of nutrients were common to both the NP and the ETC. The combined qualitative and quantitative protein profiling allowed for the identification of several proteins showing tissue specificity in their expression, which underlines the distinct biological functions of these two tissues within the developing barley grain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Barnabas B, Jager K, Feher A (2008) The effect of drought and heat stress on reproductive processes in cereals. Plant Cell Environ 31(1):11–38

    CAS  Google Scholar 

  2. Olsen OA (2001) Endosperm development: cellularization and cell fate specification. Annu Rev Plant Physiol Plant Mol Biol 52:233–267

    Article  CAS  Google Scholar 

  3. Gruis D, Guo HN, Selinger D, Tian Q, Olsen OA (2006) Surface position, not signaling from surrounding maternal tissues, specifies aleurone epidermal cell fate in maize. Plant Physiol 141(3):898–909

    Article  CAS  Google Scholar 

  4. Olsen OA (2007) Endosperm: developmental and molecular biology. Springer Verlag, Berlin

    Google Scholar 

  5. Radchuk VV, Borisjuk L, Sreenivasulu N, Merx K, Mock HP, Rolletschek H, Wobus U, Weschke W (2009) Spatiotemporal profiling of starch biosynthesis and degradation in the developing barley grain. Plant Physiol 150(1):190–204

    Article  CAS  Google Scholar 

  6. Thiel J, Weier D, Sreenivasulu N, Strickert M, Weichert N, Melzer M, Czauderna T, Wobus U, Weber H, Weschke W (2008) Different hormonal regulation of cellular differentiation and function in nucellar projection and endosperm transfer cells: a microdissection-based transcriptome study of young barley grains. Plant Physiol 148(3):1436–1452

    Article  CAS  Google Scholar 

  7. Weichert N, Saalbach I, Weichert H, Kohl S, Erban A, Kopka J, Hause B, Varshney A, Sreenivasulu N, Strickert M, Kumlehn J, Weschke W, Weber H (2010) Increasing sucrose uptake capacity of wheat grains stimulates storage protein synthesis. Plant Physiol 152(2):698–710

    Article  CAS  Google Scholar 

  8. Weschke W, Panitz R, Sauer N, Wang Q, Neubohn B, Weber H, Wobus U (2000) Sucrose transport into barley seeds: molecular characterization of two transporters and implications for seed development and starch accumulation. Plant J 21(5):455–467

    Article  CAS  Google Scholar 

  9. Sreenivasulu N, Radchuk V, Strickert M, Miersch O, Weschke W, Wobus U (2006) Gene expression patterns reveal tissue-specific signaling networks controlling programmed cell death and aba-regulated maturation in developing barley seeds. Plant J 47(2):310–327

    Article  CAS  Google Scholar 

  10. Ramsay K, Jones MGK, Wang ZH (2006) Laser capture microdissection: a novel approach to microanalysis of plant-microbe interactions. Mol Plant Pathol 7(5):429–435

    Article  CAS  Google Scholar 

  11. Hennig L (2007) Patterns of beauty—omics meets plant development. Trends Plant Sci 12(7):287–293

    Article  CAS  Google Scholar 

  12. Mustafa DAN, Burgers PC, Dekker LJ, Charif H, Titulaer MK, Sillevis Smitt PAE, Luider TM, Kros JM (2007) Identification of glioma neovascularization-related proteins by using MALDI-FTMS and nano-LC fractionation to microdissected tumor vessels. Mol Cell Proteomics 6(7):1147–1157

    Article  CAS  Google Scholar 

  13. Kaspar S, Matros A, Mock HP (2010) Proteome and flavonoid analysis reveals distinct responses of epidermal tissue and whole leaves upon UV-B radiation of barley (Hordeum vulgare L.) seedlings. J Proteome Res 9(5):2402–2411

    Article  CAS  Google Scholar 

  14. Silva JC, Denny R, Dorschel C, Gorenstein MV, Li GZ, Richardson K, Wall D, Geromanos SJ (2006) Simultaneous qualitative and quantitative analysis of the Escherichia coli proteome—a sweet tale. Mol Cell Proteomics 5(4):589–607

    CAS  Google Scholar 

  15. Li GZ, Vissers JPC, Silva JC, Golick D, Gorenstein MV, Geromanos SJ (2009) Database searching and accounting of multiplexed precursor and product ion spectra from the data independent analysis of simple and complex peptide mixtures. Proteomics 9(6):1696–1719

    Article  CAS  Google Scholar 

  16. Xu DM, Suenaga N, Edelmann MJ, Fridman R, Muschel RJ, Kessler BM (2008) Novel mmp − 9 substrates in cancer cells revealed by a label-free quantitative proteomics approach. Mol Cell Proteomics 7(11):2215–2228

    Article  CAS  Google Scholar 

  17. Cheng FY, Blackburn K, Lin YM, Goshe MB, Williamson JD (2009) Absolute protein quantification by LC/MSe for global analysis of salicylic acid-induced plant protein secretion responses. J Proteome Res 8(1):82–93

    Article  CAS  Google Scholar 

  18. Sreenivasulu N, Altschmied L, Radchuk V, Gubatz S, Wobus U, Weschke W (2004) Transcript profiles and deduced changes of metabolic pathways in maternal and filial tissues of developing barley grains. Plant J 37(4):539–553

    Article  CAS  Google Scholar 

  19. Sreenivasulu N, Usadel B, Winter A, Radchuk V, Scholz U, Stein N, Weschke W, Strickert M, Close TJ, Stitt M, Graner A, Wobus U (2008) Barley grain maturation and germination: metabolic pathway and regulatory network commonalities and differences highlighted by new MAPMAN/PAGEMAN profiling tools. Plant Physiol 146(4):1738–1758

    Article  CAS  Google Scholar 

  20. Thiel J, Muller M, Weschke W, Weber H (2009) Amino acid metabolism at the maternal-filial boundary of young barley seeds: a microdissection-based study. Planta 230(1):205–213

    Article  CAS  Google Scholar 

  21. Schad M, Lipton MS, Giavalisco P, Smith RD, Kehr J (2005) Evaluation of two-dimensional electrophoresis and liquid chromatography tandem mass spectrometry for tissue-specific protein profiling of laser-microdissected plant samples. Electrophoresis 26(14):2729–2738

    Article  CAS  Google Scholar 

  22. Umar A, Luider TM, Foekens JA, Pasa-Tolic L (2007) NanoLC-FT-ICR MS improves proteome coverage attainable for similar to 3000 laser-microdissected breast carcinoma cells. Proteomics 7(2):323–329

    Article  CAS  Google Scholar 

  23. Dembinsky D, Woll K, Saleem M, Liu Y, Fu Y, Borsuk LA, Lamkemeyer T, Fladerer C, Madlung J, Barbazuk B, Nordheim A, Nettleton D, Schnable PS, Hochholdinger F (2007) Transcriptomic and proteomic analyses of pericycle cells of the maize primary root. Plant Physiol 145(3):575–588

    Article  CAS  Google Scholar 

  24. Wang YJ, Rudnick PA, Evans EL, Li J, Zhuang ZP, DeVoe DL, Lee CS, Balgley BM (2005) Proteome analysis of microdissected tumor tissue using a capillary isoelectric focusing-based multidimensional separation platform coupled with ESI-tandem MS. Anal Chem 77(20):6549–6556

    Article  CAS  Google Scholar 

  25. Bevan M, Bancroft I, Bent E, Love K, Goodman H, Dean C, Bergkamp R, Dirkse W, Van Staveren M, Stiekema W, Drost L, Ridley P, Hudson SA, Patel K, Murphy G, Piffanelli P, Wedler H, Wedler E, Wambutt R, Weitzenegger T, Pohl TM, Terryn N, Gielen J, Villarroel R, De Clerck R, Van Montagu M, Lecharny A, Auborg S, Gy I, Kreis M, Lao N, Kavanagh T, Hempel S, Kotter P, Entian KD, Rieger M, Schaeffer M, Funk B, Mueller-Auer S, Silvey M, James R, Montfort A, Pons A, Puigdomenech P, Douka A, Voukelatou E, Milioni D, Hatzopoulos P, Piravandi E, Obermaier B, Hilbert H, Dusterhoft A, Moores T, Jones JDG, Eneva T, Palme K, Benes V, Rechman S, Ansorge W, Cooke R, Berger C, Delseny M, Voet M, Volckaert G, Mewes HW, Klosterman S, Schueller C, Chalwatzis N (1998) Analysis of 1.9 mb of contiguous sequence from chromosome 4 of Arabidopsis thaliana. Nature 391(6666):485–488

    Article  CAS  Google Scholar 

  26. Offler CE, McCurdy DW, Patrick JW, Talbot MJ (2003) Transfer cells: cells specialized for a special purpose. Annu Rev Plant Biol 54:431–454

    Article  CAS  Google Scholar 

  27. Hamilton CA, Good AG, Taylor GJ (2001) Induction of vacuolar ATPase and mitochondrial ATP synthase by aluminum in an aluminum-resistant cultivar of wheat. Plant Physiol 125(4):2068–2077

    Article  CAS  Google Scholar 

  28. Klingenberg M (2008) The ADP and ATP transport in mitochondria and its carrier. Biochim Biophys Acta 1778(10):1978–2021

    Article  CAS  Google Scholar 

  29. Kovalchuk N, Smith J, Pallotta M, Singh R, Ismagul A, Eliby S, Bazanova N, Milligan AS, Hrmova M, Langridge P, Lopato S (2009) Characterization of the wheat endosperm transfer cell-specific protein tapr60. Plant Mol Biol 71(1–2):81–98

    Article  CAS  Google Scholar 

  30. Klein C, Aivaliotis M, Olsen JV, Falb M, Besir H, Scheffer B, Bisle B, Tebbe A, Konstantinidis K, Siedler F, Pfeiffer F, Mann M, Oesterhelt D (2007) The low molecular weight proteome of Halobacterium salinarum. J Proteome Res 6(4):1510–1518

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from the German Federal Ministry of Education and Research (BMBF, 0313821A), the Federal State of Saxony-Anhalt, and the Cost Action FA0603, especially a grant to a short-term scientific mission (COST-STSM-FA0603-05188) is gratefully acknowledged. We thank Uta Siebert for her excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Matros.

Additional information

Published in the special issue Mass Spectrometry (DGMS 2010) with guest editors Andrea Sinz and Jürgen Schmidt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 510 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaspar, S., Weier, D., Weschke, W. et al. Protein analysis of laser capture micro-dissected tissues revealed cell-type specific biological functions in developing barley grains. Anal Bioanal Chem 398, 2883–2893 (2010). https://doi.org/10.1007/s00216-010-4120-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-4120-y

Keywords

Navigation