Skip to main content
Log in

Microdialysis-based sensing in clinical applications

  • Trends
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The need for fast and continuous measurements in the biomedical field is driving scientists to look for an alternative to blood sampling. This implies the adoption of invasive approaches, which, in some cases, may lead to reduced safety for the patient; consequently this strategy is pursued only if it is unavoidable. Microdialysis-based sensing provides a minimally invasive solution, with biological samples drawn by means of a microdialysis catheter and examined outside the human body. Therefore, it has become a promising approach to investigate the interstitial fluid in human brain and subcutaneous adipose tissue, providing important information on the tissue biochemistry and metabolism. Advantages and limitations of microdialysis are considered here and the applications in the clinical field are described, with the provision of some examples and with a view to the new perspectives in the field.

Microdialysis probe inserted in the tissue. Black arrows indicate the diffusion of the analyte through the dialysis membrane and red arrows indicate the flow of the solution inside the probe

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Baldini F (2006) Optical chemical sensors. In: Baldini F, Homola J, Martellucci S, Chester A (eds) NATO science series, vol. 224. Springer, Dordrecht, pp 417–435

    Google Scholar 

  2. Mignani AG, Baldini F (1996) Rep Prog Phys 59:1–28

    Article  CAS  Google Scholar 

  3. Chaurasia C, Müller M, Bashaw ED, Benfeldt E, Bolinder J, Bullock R, Bungay PM, DeLange ECM, Derendorf H, Elmquist WF, Hammarlund-Udenaes M, Joukhadar C, Kellogg DL Jr, Lunte CE, Nordstrom CH, Rollema H, Sawchuk RJ, Cheung BWY, Shah VP, Stahle L, Ungerstedt U, Welty DF, Yeo H (2007) Pharmacol Res 24:1014–1025

    Article  CAS  Google Scholar 

  4. Müller M (2002) BMJ 324:588–591

    Article  Google Scholar 

  5. Delgado JM, DeFeudis FV, Roth RH, Ryugo DK, Mitruka BM (1972) Arch Int Pharmacodyn Ther 198:9–21

    CAS  Google Scholar 

  6. Ungerstedt U, Pycock C (1974) Bull Schweiz Akad Med Wiss 30:44–55

    CAS  Google Scholar 

  7. Lonroth P, Jansson PA, Smith U (1987) Am J Physiol 253:E228–E231

    Google Scholar 

  8. Richards DA, Tolias CM, Sgouros S, Bowery NG (2003) Pharmacol Res 48:101–109

    CAS  Google Scholar 

  9. Tisdall MM, Smith M (2006) Br J Anaesth 97:18–25

    Article  CAS  Google Scholar 

  10. McAdoo DJ, Wu P (2008) Pharmacol Biochem Behav 90:282–296

    Article  CAS  Google Scholar 

  11. Bhatia A, Gupta AK (2009) In: Pinsky MR, Brochard L, Mancebo J (eds) Applied physiology in intensive care medicine. Springer, Berlin, pp 123–129

    Chapter  Google Scholar 

  12. Klaus S, Heringlake M, Bahlmann L (2004) Crit Care 8:363–368

    Article  Google Scholar 

  13. Martinez A, Chiolero R, Bollman M, Revelly JP, Berger M, Cayeux C, Tappy L (2003) Clin Physiol Funct Imaging 23:286–292

    Article  Google Scholar 

  14. Nowak G, Ungerstedt J, Wernerman J, Ungerstedt U, Ericzon BG (2002) Liver Transpl 8:424–432

    Article  Google Scholar 

  15. Nowak G, Ungerstedt J, Wernerman J, Ungerstedt U, Ericzon BG (2002) Br J Surg 89:1169–1175

    Article  CAS  Google Scholar 

  16. Baumeister FAM, Rolinski B, Busch R, Emmrich P (2001) Pediatrics 108:1187–1192

    Article  CAS  Google Scholar 

  17. Ao X, Stenken JA (2006) Methods 38:331–341

    Article  CAS  Google Scholar 

  18. Winter CD, Iannotti F, Pringle AK, Trikkas C, Clough GF, Church MK (2002) J Neurosci Methods 119:45–50

    Article  CAS  Google Scholar 

  19. Ekberg NR, Wisniewski N, Brismar K, Ungerstedt U (2005) Clin Chim Acta 359:53–64

    Article  CAS  Google Scholar 

  20. Street D, Bangsbo J, Juel C (2001) J Physiol 537:993–998

    Article  CAS  Google Scholar 

  21. Nandi P, Lunte SM (2009) Anal Chim Acta 651:1–14

    Article  CAS  Google Scholar 

  22. Pasic A, Koehler H, Schaupp L, Pieber TR, Klimant I (2006) Anal Bioanal Chem 386:1293–1302

    Article  CAS  Google Scholar 

  23. Van den Berghe G, Wouters P, Weekers F, Verwaest C, Bruyninckx F, Schetz M, Vlasselaers D, Ferdinande P, Lauwers P, Bouillon R (2001) N Engl J Med 345:1359–1367

    Article  Google Scholar 

  24. Ellmerer M, Pachler C, Plank J (2008) J Diabetes Sci Technol 2:728–731

    Google Scholar 

  25. Ellmerer M, Haluzik M, Blaha J, Kremen J, Svacina S, Toller W, Mader J, Schaupp L, Plank J, Pieber TR (2006) Diabetes Care 29:1275–1281

    Article  CAS  Google Scholar 

  26. Trettnak W, Leiner MJP, Wolfbeis OS (1988) Analyst 113:1519–1523

    Article  CAS  Google Scholar 

  27. Pasic A, Koehler H, Klimant I, Schaupp L (2007) Sens Actuators B 122:60–68

    Article  Google Scholar 

  28. Moscone D, Pasini M, Mascini M (1992) Talanta 8:1039–1044

    Article  Google Scholar 

  29. Ricci F, Moscone D, Palleschi G (2008) IEEE Sens J 8:63

    Article  CAS  Google Scholar 

  30. Maran A et al (2002) Diabetes Care 25:347–352

    Article  CAS  Google Scholar 

  31. Kubiak T, Wörle B, Kuhr B, Nied I, Gläsner G, Hermanns N, Kulozer B, Haak T (2006) Diabetes Technol Ther 8:570–575

    Article  CAS  Google Scholar 

  32. Baldini F, Giannetti A, Mencaglia AA (2007) J Biomed Opt 12:024024

    Article  Google Scholar 

  33. Baldini F, Bizzarri A, Cajlakovic M, Feichtner F, Gianesello L, Giannetti A, Gori G, Konrad C, Mencaglia AA, Mori E, Pavoni V, Perna AM, Trono C (2007) Proc SPIE 6585:658510

    Article  Google Scholar 

  34. Cajlakovic M, Bizzarri A, Suppan M, Konrad C, Ribitsch V (2009) Sens Actuators B 139:181–186

    Article  Google Scholar 

  35. Mc Kinley BA, Butler BD (1999) Crit Care Med 27:1869–1877

    Article  CAS  Google Scholar 

  36. Gu YJ, Boonstra PW (2005) Multimedia Man Cardiothorac Surg. doi:10.1510/mmcts.2005.001198

    Google Scholar 

  37. Davies MI (1999) Anal Chim Acta 379:227–249

    Article  CAS  Google Scholar 

  38. Stjernstrom H, Karlsson T, Ungerstedt U, Hillered L (1993) Intens Care Med 19:423–428

    Article  CAS  Google Scholar 

  39. Patsalos P, O’Connel M, Doheny H, Sander J, Shorvon S (1996) Acta Neurochir 67:59–62

    CAS  Google Scholar 

  40. Verbeek RK (2000) Adv Drug Deliver Rev 45:217–228

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Baldini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baldini, F. Microdialysis-based sensing in clinical applications. Anal Bioanal Chem 397, 909–916 (2010). https://doi.org/10.1007/s00216-010-3626-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-3626-7

Keywords

Navigation