Skip to main content

Microdialysis in Metabolic Research

  • Chapter
  • First Online:
Microdialysis in Drug Development

Part of the book series: AAPS Advances in the Pharmaceutical Sciences Series ((AAPS,volume 4))

  • 1229 Accesses

Abstract

Clinical metabolic research needs tools to get a footprint of human physiology and pathophysiology in vivo. The novel idea of monitoring interstitial fluid by microdialysis in the brain of laboratory animals was a complement to ordinary blood sampling. Semipermeable hollow fibers were implemented in the brain-tissue mimicking characteristics of artificial blood vessels communicating with freely diffusing molecules in situ. Subcutaneous microdialysis for measurements of interstitial concentrations of any low molecular compound was introduced in 1987. Each microdialysis catheter required calibration in situ by the “no net flux” method to get the “true” interstitial glucose, lactate, adenosine, and glycerol concentrations. Addition of 133Xe-clearance assessments of adipose tissue blood flow (ATBF) allowed adoption of Fick’s principle to get an estimate of substrate release. By the time, technical improvements of probes and recovery techniques have made it possible to monitor interstitial insulin and cytokines/chemokines in both sc adipose tissue and muscle. In fact, almost every organ in the human body may be accessible for monitoring of small and large molecules in the interstitial fluid. Thus, the future for the microdialysis technique in metabolic research looks bright.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed K, Tunaru S, Tang C, Müller M, Gille A, Sassmann A, Hanson J, Offermanns S (2010) An autocrine lactate loop mediates insulin-dependent inhibition of lipolysis through GPR81. Cell Metab 11:311–319

    PubMed  CAS  Google Scholar 

  • Amberg G, Lindefors N (1989) Intracerebral microdialysis: II. Mathematical studies of diffusion kinetics. J Pharm Meth 22:157–183

    CAS  Google Scholar 

  • Andersen MB, Pingel J, Kjaer M, Langberg H (2011) Interleukin-6: a growth factor stimulating collagen synthesis in human tendon. J Appl Physiol 110:1549–1554

    PubMed  CAS  Google Scholar 

  • Ardilouze JL, Fielding BA, Currie JM, Frayn KN, Karpe F (2004) Nitric oxide and beta-adrenergic stimulation are major regulators of preprandial and postprandial subcutaneous adipose tissue blood flow in humans. Circulation 109:47–52

    PubMed  CAS  Google Scholar 

  • Arner P, Kriegholm E, Engfeldt P, Bolinder J (1990a) Adrenergic reulation of lipolysis in situ at rest and during exercise. J Clin Invest 85:893–898

    PubMed  CAS  Google Scholar 

  • Arner P, Kriegholm E, Engfeldt P (1990b) In situ studies of catecholamine-induced lipolysis in human adipose tissue using microdialysis. J Pharmacol Exp Ther 254:284–288

    PubMed  CAS  Google Scholar 

  • Ashina M, Stallknecht B, Bendtsen L, Pedersen JF, Schifter S, Galbo H, Olesen J (2003) Tender points are not sites of ongoing inflammation—in vivo evidence in patients with chronic tension-type headache. Cephalalgia 23:109–116

    PubMed  CAS  Google Scholar 

  • Benveniste H, Hüttemeier PC (1990) Microdialysis—theory and application. Prog Neurobiol 35:195–215

    PubMed  CAS  Google Scholar 

  • Berg U, Gustafsson T, Sundberg CJ, Carlsson-Skwirut C, Hall K, Jakeman P, Bang P (2006) Local changes in the insulin-like growth factor systemin human skeletal muscle assessed by microdialysis and arterio-venous difference technique. Growth Horm IGF Res 16:217–223

    PubMed  CAS  Google Scholar 

  • Bito L, Davson H, Levin EM, Murray M, Snider N (1966) The concentration of free amino acids and other electrolytes in cerebrospinal fluid in vivo dialysate of brain and blood plasma of the dog. J Neurochem 13:1057–1067

    PubMed  CAS  Google Scholar 

  • Blackard WG, Clore JN, Glickman PS, Nestler JE, Kellum JM (1993) Insulin sensitivity of splanchnic and peripheral adipose tissue in vivo in morbidly obese man. Metabolism 42:1195–1200

    PubMed  CAS  Google Scholar 

  • Bolinder J, Hagström E, Ungerstedt U, Arner P (1989) Microdialysis of subcutaneous adipose tissue in vivo for continuous glucose monitoring in man. Scand J Clin Lab Invest 49:465–474

    PubMed  CAS  Google Scholar 

  • Bolinder J, Ungerstedt U, Arner P (1992) Microdialysis measurement of the absolute glucose concentration in subcutaneous adipose tissue allowing glucose monitoring in diabetic patients. Diabetologia 35:1177–1180

    PubMed  CAS  Google Scholar 

  • Bolinder J, Ungerstedt U, Arner P (1993) Long-term continuous glucose monitoring with microdialysis in ambulatory insulin-dependent diabetic patients. Lancet 342:1080–1085

    PubMed  CAS  Google Scholar 

  • Borsheim E, Lönnroth P, Knardahl S, Jansson P-A (2000) No difference in the lipolytic response to beta-adrenoceptor stimulation in situ but a delayed increase in adipose tissue blood flow in moderately obese compared with lean men in the postexercise period. Metabolism 49:579–587

    PubMed  CAS  Google Scholar 

  • Bortz WM, Paul P, Haff AC, Holmes WL (1972) Glycerol turnover and oxidation in man. J Clin Invest 51:1537–1546

    PubMed  CAS  Google Scholar 

  • Carlson LA, Orö L (1963) Studies on the relationship between the concentration of plasma free fatty acids and glycerol in vivo. Metabolism 12:132–142

    PubMed  CAS  Google Scholar 

  • Claremont DJ, Sambrook IE, Penton C, Pickup JC (1986) Subcutaneous implantation of a ferrocene-mediated glucose sensor in pigs. Diabetologia 29:817–821

    PubMed  CAS  Google Scholar 

  • Clausen TS, Kaastrup P, Stallknecht B (2009) Proinflammattory tissue response and recovery of adipokines during four days of subcutaneouss large-pore microdialysis. J Pharmacol Toxicol Methods 60:281–287

    PubMed  CAS  Google Scholar 

  • Clausen F, Marklund N, Lewén A, Enblad P, Basu S, Hillered L (2012) Interstitial F(2)-Isoprostane 8-Iso-PGF(2alpha) as a biomarker of oxidative stress after severe human traumatic brain injury. J Neurotrauma 29:766–775

    PubMed  Google Scholar 

  • Consoli A, Nurjhan N, Reilly JJ, Bier DM, Gerich J (1990) Mechanism of increased gluconeogenesis in noninsulin-dependent diabetes mellitus. Role of alterations in systemic, hepatic, and muscle lactate and alanine metabolism. J Clin Invest 86:2038–2045

    PubMed  CAS  Google Scholar 

  • Dahlin AP, Hjort K, Hillered L, Sjödin MO, Bergquist J, Wetterhall M (2012) Multiplexed quantification of proteins adsorbed to surface-modified and non-modified microdialyis membranes. Anal Bioanal Chem 402:2057–2067

    PubMed  CAS  Google Scholar 

  • Delgado JMR, DeFeudis FV, Roth RH, Ryugo DK, Mitruka BM (1972) Dialytrode for long term intracerebral perfusion in awake monkeys. Arch Int Pharmacodyn 198:9–21

    PubMed  CAS  Google Scholar 

  • DiGirolamo M, Esposito J (1975) Adipose tissue blood flow and cellularity in the growing rabbit. Am J Physiol 229:107–112

    PubMed  CAS  Google Scholar 

  • Doar JWH, Cramp DG (1970) The effect of obesity and maturity-onset diabetes mellitus on L(+) lactic acid metabolism. Clin Sci 76:509–516

    Google Scholar 

  • Dodt C, Lönnroth P, Fehm HL, Elam M (2000) The subcutaneous lipolytic response to regional neural stimulation is reduced in obese women. Diabetes 49:1875–1879

    PubMed  CAS  Google Scholar 

  • Dole CP (1956) A relation between non-esterified fatty acids in plasma and the metabolism of glucose. J Clin Invest 35:150–154

    PubMed  CAS  Google Scholar 

  • Enevoldsen LH, Simonsen L, Stallknecht B, Galbo H, Bülow J (2001) In vivo human lipolytic activity in preperitoneal and subdivisions of subcutaneous abdominal adipose tissue. Am J Physiol 28:E1110–E1114

    Google Scholar 

  • Eriksson JW, Smith U, Waagstein F, Wysocki M, Jansson PA (1999) Glucose turnover and adipose tissue lipolysis are insulin-resistant in healthy relatives of type two diabetes patients: is cellular insulin resistance a secondary phenomenon? Diabetes 48:1572–1578

    PubMed  CAS  Google Scholar 

  • Frayn KN, Coppack SW, Humphreys SM, Whyte PL (1989) Metabolic characteristics of human adipose tissue in vivo. Clin Sci 76:509–516

    PubMed  CAS  Google Scholar 

  • Gaddum JH (1961) Push–pull cannulae. J Physiol 155:1–2

    Google Scholar 

  • Gill C, Parkinson E, Church MK, Skipp P et al (2011) A qualitative and quantitative proteomic study of human microdialysate and the cutaneous response to injury. AAPS J 13:309–317

    PubMed  CAS  Google Scholar 

  • Goodman JC, Robertson CS (2009) Microdialysis: is it ready for prime time? Curr Opin Crit Care 15:110–117

    PubMed  Google Scholar 

  • Goossens GH, Bizzarri A, Venteclef N, Essers Y et al (2011) Increased adipose tissue oxygen tension in obese compared with lean men is accompanied by insulin-resistance, impaired adipose tissue capillarization a, and inflammation. Circulation 124:67–76

    PubMed  CAS  Google Scholar 

  • Grönlund B, Astrup A, Bie P, Christensen NJ (1991) Noradrenaline release in skeletal muscle and in adipose tissue studied by microdialysis. Clin Sci 80:595–598

    PubMed  Google Scholar 

  • Gudbjornsdottir S, Sjöstrand M, Strindberg L, Wahren J, Lönnroth P (2003) Direct measurements of the permeability surface area for insulin and glucose in human skeletal muscle. J Clin Endocrinol Metab 88:4559–4564

    PubMed  Google Scholar 

  • Hagström E, Arner P, Ungerstedt U, Bolinder J (1990) Subcutaneous adipose tissue: a source of lactate production after glucose ingestion in humans. Am J Physiol 258:E888–E893

    PubMed  Google Scholar 

  • Hagstrom-Toft E, Arner P, Näslund B, Ungerstedt U, Bolinder J (1991) Effect of insulin deprivation and replacement on in vivo subcutaneous adipose tissue substrate metabolism in humans. Diabetes 40:666–672

    PubMed  CAS  Google Scholar 

  • Hagström-Toft E, Enoksson S, Moberg E, Bolinder J, Arner P (1997) Absolute concentrations of glycerol and lactate in human skeletal muscle, adipose tissue, and blood. Am J Physiol 273:E584–E592

    PubMed  Google Scholar 

  • Hamberger A, Berthold CH, Karlsson B, Lehmann A, Nyström B (1983) Extracellular GABA, glutamate and glutamine in vivo—perfusion-dialysis of the rabbit hippocampus. In: Glutamine, glutamate and GABA in the central nervous system. Alan R Liss Inc., New York, pp 119–139

    Google Scholar 

  • Hansen AH, Nielsen JJ, Saltin B, Hellsten Y (2010) Exercise training normalizes skeletal muscle vascular endothelial growth factor in patients with essential hypertension. J Hypertens 28:1176–1185

    PubMed  CAS  Google Scholar 

  • Haugaa H, Thorgersen EB, Pharo A, Boberg KM et al (2012) Early bedside detection of ischemia and rejection in liver transplants by microdialysis. Liver Transpl [Epub ahead of print]

    Google Scholar 

  • Havel R (1965) Some influences of the sympathetic nervous system and insulin on mobilization of fat from adipose tissue: studies of the turnover rates of free fatty acids and glycerol. Ann N Y Acad Sci 13:91–101

    Google Scholar 

  • Herkner H, Klein N, Joukhadar C, Lackner E et al (2003) Transcapillary insulin transfer in human skeletal muscle. Eur J Clin Invest 33:141–146

    PubMed  CAS  Google Scholar 

  • Hickner R (2000) Application of the microdialysis technique in sports medicine. Exerc Sport Sci Rev 28:117–122

    PubMed  CAS  Google Scholar 

  • Hickner RC, Rosdahl H, Borg I, Ungerstedt U, Jorfeldt L, Henriksson J (1991) Ethanol may be used with the microdialysis technique to monitor blood flow changes in skeletal muscle: dialysate glucose concentration is blood-flow-dependent. Acta Physiol Scand 143:355–356

    PubMed  CAS  Google Scholar 

  • Hickner RC, Kemeny G, Clark PD, Gavin VB, McIver KL, Evans CA, Carper MJ, Garry JP (2011) In vivo nitric oxide suppression of lipolysis in subcutaneous abdominal adipose tissue is greater in obese than in lean women. Obesity 20:1174–1178

    PubMed  Google Scholar 

  • Hirsch J, Gallian E (1968) Methods for the determination of adipose cell size in man and animals. L Lipid Res 9:110–119

    CAS  Google Scholar 

  • Hirsch J, Farquhar JW, Ahrens EH, Peterson ML, Stoffel W (1960) Studies of adipose tissue in man. A microtechnic for sampling and analysis. Am J Clin Nutr 8:499–511

    PubMed  CAS  Google Scholar 

  • Höjbjerre L, Sonne MP, Alibegovic AC, Dela F, Vaag A, Meldgaard JB, Christensen KB, Stallknecht B (2010) Impact of physical inactivity on subcutaneous adipose tisue metabolism in healthy young male offspring of patients with type 2 diabetes. Diabetes 59:2790–2798

    PubMed  Google Scholar 

  • Höjbjerre L, Sonne MP, Alibegovic AC, Dela F, Bruun JM, Stallknecht B (2011) Impact of physical inactivity on adipose tissue low-grade inflammation in first-degree relatives of type 2 diabetic patients. Diabetes Care 34:2265–2272

    PubMed  Google Scholar 

  • Holmäng A, Nilsson C, Niklasson M, Larsson BM, Lönnroth P (1999) Induction of insulin resistance by glucosamine reduces blood flow but not interstitial levels of either glucose or insulin. Diabetes 48:106–111

    PubMed  Google Scholar 

  • Holmäng A, Niklasson M, Rippe B, Lönnroth P (2001) Insulin insensitivity and delayed transcapillary of insulin in oophrectomized rats treated with testosterone. Acta Physiol Scand 171:427–438

    PubMed  Google Scholar 

  • Jacobson I, Sandberg M, Hamberger A (1985) Mass transfer in brain dialysis devices—a new method for the estimation of extracellular amino acid concentrations. J Neurosci Meth 15:263–268

    CAS  Google Scholar 

  • Jansson P-A, Lönnroth P (1995) Comparison of two methods to assess the tissue/blood partition coefficient for Xenon in subcutaneous adipose tissue in man. Clin Physiol 15:47–55

    PubMed  CAS  Google Scholar 

  • Jansson PA, Fowelin J, Smith U, Lönnroth P (1988) Characterization by microdialysis of intercellular glucose levels in subcutaneous tissue in humans. Am J Physiol 255:E218–E220

    PubMed  CAS  Google Scholar 

  • Jansson PA, Smith U, Lönnroth P (1990a) Evidence for lactate production by human adipose tissue in vivo. Diabetologia 33:253–256

    PubMed  CAS  Google Scholar 

  • Jansson PA, Smith U, Lönnroth P (1990b) Interstitial glycerol concentration measured by microdialysis in two subcutaneous regions in man. Am J Physiol 258:E918–E922

    PubMed  CAS  Google Scholar 

  • Jansson PA, Larsson A, Smith U, Lönnroth P (1992) Glycerol production in subcutaneous adipose tissue in lean and obese humans. J Clin Invest 89:1610–1617

    PubMed  CAS  Google Scholar 

  • Jansson PA, Fowelin JP, von Schenck HP, Smith UP, Lönnroth P (1993) Measurement by microdialysis of the insulin concentration in subcutaneous interstitial fluid. Importance of the endothelial barrier for insulin. Diabetes 42:1469–1473

    PubMed  CAS  Google Scholar 

  • Jansson PA, Veneman T, Nurjhan N, Gerich J (1994a) An improved method to calculate adipose tissue interstitial substrate recovery for microdialysis studies. Life Sci 54:1621–1624

    PubMed  CAS  Google Scholar 

  • Jansson PA, Larsson A, Smith U, Lönnroth P (1994b) Lactate release from the subcutaneous tissue in lean and obese man. J Clin Invest 93:240–246

    PubMed  CAS  Google Scholar 

  • Jansson PA, Smith U, Lönnroth P (1995) Microdialysis assessment of adipose tissue metabolism in post-absorptive obese NIDDM subjects. Eur J Clin Invest 25:584–589

    PubMed  CAS  Google Scholar 

  • Jansson PA, Larsson A, Lönnroth P (1998) Relationship between blood pressure, metabolic variables and blood flow in obese subjects with or without non-insulin-dependent diabetes mellitus. Eur J Clin Invest 28:813–818

    PubMed  CAS  Google Scholar 

  • Jansson PA, Murdolo G, Sjögren L, Nyström B, Sjöstrand M, Strindberg L, Jansson PA (2010) Tadalafil increases muscle capillary recruitment and forearm glucose uptake in women with type 2 diabetes. Diabetologia 53:2205–2208

    PubMed  CAS  Google Scholar 

  • Jensen MD (1991) Regulation of forearm lipoysis in different types of obesity. In vivo evidence for adipocyte heterogenity. J Clin Invest 87:187–193

    PubMed  CAS  Google Scholar 

  • Joost HG, Steinfelder HJ (1982) Modulation of insulin sensitivity by adenosine. Mol Pharmacol 22:614–618

    PubMed  CAS  Google Scholar 

  • Karpe F, Fielding BA, Ilic V, Macdonald IA, Summers LK, Frayn KN (2002a) Impaired postprandial adipose tissue blood flow response is related to aspects of insulin sensitivity. Diabetes 51:2467–2473

    PubMed  CAS  Google Scholar 

  • Karpe F, Fielding BA, Ilic V, Humphreys SM, Frayn KN (2002b) Monitoring adipose tissue blood flow in man: a comparison between the (133)Xenon washout method and microdialysis. Int J Obes Relat Metab Disord 26:1–5

    PubMed  CAS  Google Scholar 

  • Kashiwagi A, Verso MA, Andrews J, Vasques G, Reaven G, Foley JE (1983) In vitro insulin resistance of human adipocytes isolated from subjects with noninsulin-dependent diabetes mellitus. J Clin Invest 72:146–1254

    Google Scholar 

  • Kather H, Bieger W, Aktories MK, Jakobs KH (1985) Human fat cell lipolysis is primarily regulated by inhibitory modulators acting through distinct mechanisms. J Clin Invest 76:1559–1565

    PubMed  CAS  Google Scholar 

  • Kiistala U (1968) Suction blister device for separation of viable epidermis from dermis. J Invest Dermatol 50:129–137

    PubMed  CAS  Google Scholar 

  • Klabunde RE (1983) Dipyridamole inhibition of adenosine metabolism in human blood. Eur J Pharmacol 93:21–26

    PubMed  CAS  Google Scholar 

  • Knittle JL, Hirsch J (1970) Cellularity of obese and non-obese human adipose tissue. Fed Proc 29:1516–1521

    PubMed  Google Scholar 

  • Koppo K, Siklova-Vitkova M, Klimcakova E, Polak J et al (2012) Catecholamine and insulin control of lipolysis in subcutaneous adipose tissue during long-term diet-induced weight loss in obese women. Am J Physiol 302:E226–E232

    CAS  Google Scholar 

  • Kreiner F, Galbo H (2011) Elevated muscle interstitial levels of pain-inducing substances in symptomatic muscles in patients with polymyalgia rheumatica. Pain 152:1127–1132

    PubMed  CAS  Google Scholar 

  • Krotkiewski M, Björntorp P, Sjöström L, Smith U (1983) Impact of obesity on metabolism in men and women. Importance of regional adipose tissue distribution. J Clin Invest 72:1150–1162

    PubMed  CAS  Google Scholar 

  • Kubota T, Kubota N, Kumagai H, Yamaguchi S et al (2011) Impaired insulin signaling in endothelial cells reduces insulin-induced glucose uptake by skeletal muscle. Cell Metab 13:294–307

    PubMed  CAS  Google Scholar 

  • Lafontan M (2008) Advances in adipose tissue metabolism. Int J Obes 32(Suppl 7):S39–S51

    CAS  Google Scholar 

  • Langberg H, Olesen JL, Gemmer C, Kjaer M (2002) Substantial elevation of interleukin-6 concentration in peritendinous tissue, in contrast to muscle, following prolonged exercise in humans. J Physiol 542:985–990

    PubMed  CAS  Google Scholar 

  • Larsen OA, Lassen NA, Quaade F (1966) Blood flow through human adipose tissue determined with radioactive Xenon. Acta Physiol Scand 66:337–345

    PubMed  CAS  Google Scholar 

  • Lerma J, Herranz AS, Herreras O, Abraira V, Martin del Rio R (1986) In vivo determination of extracellular concentration of amino acids in the rat hippocampus. A method based on brain dialysis and computerized analysis. Brain Res 384:145–155

    Google Scholar 

  • Lönnroth P, Strindberg L (1995) Validation of the “internal reference technique” for calibrating microdialysis catheters in situ. Acta Physiol Scand 153:375–380

    PubMed  Google Scholar 

  • Lönnroth P, Jansson PA, Smith U (1987) A microdialysis method allowing characterization of intercellular water space in humans. Am J Physiol 253:E228–E231

    PubMed  Google Scholar 

  • Lönnroth P, Jansson PA, Fredholm BB, Smith U (1989) Measurement by microdialysis of the intercellular adenosine concentration in the subcutaneous tissue in man. Am J Physiol 256:E250–E255

    PubMed  Google Scholar 

  • Lovejoy J, Mellen B, DiGirolamo M (1990) Lactate generation following glucose ingestion: relation to obesity, carbohydrate tolerance and insulin sensitivity. Int J Obesity 14:843–855

    CAS  Google Scholar 

  • Mader JK, Feichtner F, Bock G, Köhler G, Schaller R, Plank J, Pieber TR, Ellmerer M (2012) Microdialysis—a versatile technology to perform metabolic monitoring in diabetes and critically ill patients. Diabetes Res Clin Pract [Epup ahead of print]

    Google Scholar 

  • Maggs DG, Jacob R, Rife F, Lange R, Leone P, During MJ, Tamborlane WV, Sherwin RS (1995) Interstitial concentrations of glycerol, glucose, and amino acids in human quadriceps muscle and adipose tissue. Evidence for significant lipolysis in skeletal muscle. J Clin Invest 96:370–377

    PubMed  CAS  Google Scholar 

  • Maggs DG, Jacob R, Rife F, Caprio S, Tamborlane WV, Sherwin RS (1997a) Counterregulation in peripheral tissues: effect of systemic hypoglycemia on levels of substrates and catecholamines in human skeletal muscle and adipose tissue. Diabetes 46:70–76

    PubMed  CAS  Google Scholar 

  • Maggs DG, Borg WP, Sherwin RS (1997b) Microdialysis techniques in the study of of brain and skeletal muscle. Diabetologia 40(Suppl 2):S75–S82

    PubMed  Google Scholar 

  • Mantovani V, Kennergren C, Bugge M, Sala A, Lönnroth P, Berglin E (2010) Myocardial metabolism assessed by microdialysis: a prospective randomized study in on- and off-pump coronary bypass surgery. Int J Cardiol 143:302–308

    PubMed  Google Scholar 

  • Mårin P, Rebuffé-Scrive M, Smith U, Björntorp P (1987) Glucose uptake in human adipose tissue. Metabolism 36:1154–1160

    PubMed  Google Scholar 

  • Mokshagundam SP, Peiris AN, Stagner JI, Gingerich RL, Samols E (1996) Interstitial insulin during euglycemic–hyperinsulinemic clamp in obese and lean individuals. Metabolism 45:951–956

    PubMed  CAS  Google Scholar 

  • Mortensen SP, Thaning P, Nyberg M, Saltin B, Hellsten Y (2011) Local release of ATP into the arterial inflow and venous drainage of human skeletal muscle: insight from ATP determination with the intravascular microdialysis technique. J Physiol 589:1847–1857

    PubMed  CAS  Google Scholar 

  • Müller M (2002) Science, medicine, and the future. BMJ 324:588–591

    PubMed  Google Scholar 

  • Müller M, Schmid R, Nieszpaur-Los M, Fassolt A, Lönnroth P, Fasching P, Eichler HG (1995) Key metabolite kinetics in human skeletal muscle during ischaemia and reperfusion: measurement by microdialysis. Eur J Clin Invest 25:601–607

    PubMed  Google Scholar 

  • Müller M, Holmäng A, Andersson OK, Eichler HG, Lönnroth P (1996) Measurement of of interstitial muscle glucose and lactate concentrations during an oral glucose tolerance test. Am J Physiol 271:E1003–E1007

    PubMed  Google Scholar 

  • Murdolo G, Hammarstedt A, Sandqvist M, Schmelz M, Herder C, Smith U, Jansson PA (2007) Monocyte chemoattractant protein-1 in subcutaneous abdominal adipose tissue: characterization of interstitial concentration and regulation of gene expression by insulin. J Clin Endocrinol Metab 92:2688–2695

    PubMed  CAS  Google Scholar 

  • Murdolo G, Herder C, Wang Z, Rose B, Schmelz M, Jansson PA (2008a) In situ profiling of adipokines in subcutaneous microdialysates from lean and obese individuals. Am J Physiol 295:E1095–E1105

    CAS  Google Scholar 

  • Murdolo G, Sjöstrand M, Strindberg L, Gudbjörnsdottir S, Lind L, Lönnroth P, Jansson PA (2008b) Effects of intrabrachial metacholine infusion on muscle capillary recruitment and forearm glucose uptake during physiological hyperinsulinemia in obese, insulin-resistant individuals. J Clin Endocrinol Metab 93:2764–2773

    PubMed  CAS  Google Scholar 

  • Murdolo G, Hammarstedt A, Schmelz M, Jansson PA, Smith U (2009) Acute hyperinsulinemia differentially regulates interstitial and circulating adiponectin oligomeric pattern in lean and insulin-resistant obese individuals. J Clin Endocrinol Metab 94:4508–4516

    PubMed  CAS  Google Scholar 

  • Murdolo G, Sjostrand M, Strindberg L, Lönnroth P, Jansson PA (2012) The selective phosphodiesterase-5 inhibitor tadalafil induces microvascular and metabolic effects in type 2 diabetic postmenopausal females [Epup ahead of print]

    Google Scholar 

  • Newman JM, Di Maria CA, Rattigan S, Clark MG (2001) Nutritive blood flow affects microdialysis O/I ratio for [(14)C]ethanol and (3)H(2)O in perfused rat hindlimb. Am J Physiol 281:H2731–H2737

    CAS  Google Scholar 

  • Newman JM, Rattigan S, Clark MG (2002) Nutritive blood flow improves interstitial glucose and lactate exchange in perfused rat hindlimb. Am J Physiol 283:H186–H192

    CAS  Google Scholar 

  • Niklasson M, Holmäng A, Lönnroth P (1998) Induction of rat muscle insulin resistance by epinephrine is accompanied by increased interstitial glucose and lactate concentrations. Diabetologia 41:1467–1473

    PubMed  CAS  Google Scholar 

  • Niklasson M, Daneryd P, Lönnroth P, Holmäng A (2000a) Effects of exercise on insulin distribution and action in testosterone-treated oophorectomized female rats. J Appl Physiol 88:2116–2122

    PubMed  CAS  Google Scholar 

  • Niklasson M, Holmäng A, Sjöstrand M, Strindberg L, Lönnroth P (2000b) Muscle glucose uptake is effectively activated by ischemia in type 2 diabetic subjects. Diabetes 49:1178–1185

    PubMed  CAS  Google Scholar 

  • Pachler C, Ikeoka D, Plank J, Weinhandl H et al (2007) Subcutaneous adipose tissue exerts proinflammatory cytokines after minimal trauma in humans. Am J Physiol 293:E690–E696

    CAS  Google Scholar 

  • Qvisth V, Hagström-Toft E, Enoksson S, Sherwin R, Sjöberg S, Bolinder J (2004) Combined hyperinsulinemia and hyperglycemia, but not hyperinsulinemia alone, suppress human skeletal muscle lipolytic activity in vivo. J Clin Endocrinol Metab 89:4693–4700

    PubMed  CAS  Google Scholar 

  • Qvisth V, Enoksson S, Blaak E, Hagström-Toft E, Arner P, Bolinder J (2005) Major differences in noradrenaline action on lipolysis and blood flow rates in skeletal muscle and adipose tissue in vivo. Diabetologia 48:946–953

    Google Scholar 

  • Rasio EA, Hampers CL, Soeldner JS, Cahill GF (1967) Diffusion of glucose, insulin, inulin, and Evans blue protein into thoracic duct lymph of man. J Clin Invest 46:903–910

    PubMed  CAS  Google Scholar 

  • Rattigan S, Clark MG, Barrett EJ (1997) Hemodynamic actions of insulin in rat skeletal muscle: evidence for capillary recruitment. Diabetes 46:1381–1388

    PubMed  CAS  Google Scholar 

  • Rice ME, Gerhardt GA, Hierl PM, Nagy G, Adams RN (1985) Diffusion coefficients of neurotransmitters and their metabolites in brain extracellular fluid space. Neuroscience 15:891–902

    PubMed  CAS  Google Scholar 

  • Rodbell M (1964) Metabolism of isolated fat cells. Effects of hormones on glucose metabolism and lipolysis. J Biol Chem 239:375–380

    PubMed  CAS  Google Scholar 

  • Rooyackers O, Thorell A, Nygren J, Ljungqvist O (2004) Microdialysis methods for measuring human metabolism. Curr Opin Clin Nutr Metab Care 7:515–521

    PubMed  CAS  Google Scholar 

  • Rooyackers O, Blixt C, Mattsson P, Wernerman J (2010) Continuous glucose monitoring by intravenous microdialysis. Acta Anaesthesiol Scand 54:841–847

    PubMed  CAS  Google Scholar 

  • Rosendal L, Kristiansen J, Gerdle B, Sögaard K, Peolsson M, Kjaer M, Sörensen J, Larsson B (2005) Increased levels of interstitial potassium but normal levels of of muscle IL-6 and LDH in patients with trapezius myalgia. Pain 119:201–209

    PubMed  CAS  Google Scholar 

  • Samuelsson A, Steinvall I, Sjöberg F (2006) Microdialysis shows metabolic effects in skin during fluid resuscitation in burn-injured patients. Crit Care 10:R172

    PubMed  Google Scholar 

  • Sandqvist M, Eriksson JW, Jansson P-A (2001) Increased lactate release per fat cell in normoglycemic first-degree relatives of individuals with type 2 diabetes. Diabetes 50:2344–2348

    PubMed  CAS  Google Scholar 

  • Sandqvist M, Johanson EH, Ahrén B, Axelsen M, Schmelz M, Smith U, Jansson PA (2006) Postprandial interstitial insulin concentrations in type 2 diabetes relatives. Eur J Clin Invest 36:383–388

    PubMed  CAS  Google Scholar 

  • Sandqvist M, Strindberg L, Schmelz M, Lönnroth P, Jansson PA (2011) Impaired delivery of insulin to adipose tissue and skeletal muscle in obese women with postprandial hyperglycemia. J Clin Endocrinol Metab 96:1320–1324

    Google Scholar 

  • Scheller D, Kolb J (1991) The internal reference technique in microdialysis: a practical approach to monitoring dialysis efficiency and to calculating tissue concentration from dialysate samples. J Neurosci Methods 40:31–38

    PubMed  CAS  Google Scholar 

  • Scholander PF, Hargens AR, Miller SL (1968) Negative pressure in the interstitial fluid of animals. Science 161:321–328

    PubMed  CAS  Google Scholar 

  • Shichiri M, Kawamori R, Hakui N, Yamasaki Y, Abe H (1984) Closed-loop glycemic control with a wearable artificial endocrine pancreas. Variations in daily insulin requirements to glycemic response. Diabetes 33:1200–1202

    PubMed  CAS  Google Scholar 

  • Simonsen L, Bülow J, Madsen J (1994) Adipose tissue metabolism in humans determined by vein catheterization and microdialysis techniques. Am J Physiol 266:E357–E365

    PubMed  CAS  Google Scholar 

  • Sjöstrand M, Holmäng A, Lönnroth P (1999) Measurements of of interstitial insulin in human muscle. Am J Physiol 276:E151–E154

    PubMed  Google Scholar 

  • Sjöstrand M, Holmäng A, Strindberg L, Lönnroth P (2000) Estimations of muscle interstitial insulin, glucose, and lactate in type 2 diabetic subjects. Am J Physiol 279:E1097–E1103

    Google Scholar 

  • Smit J, Zeebregts CJ, Acosta R, Werker PM (2010) Advancements in free flap monitoring in the last decade: a critical review. Plast Reconstr Surg 125:177–185

    PubMed  CAS  Google Scholar 

  • Solligård E, Wahba A, Skogvoll E, Stenseth R, Grönbech JE, Aadahl P (2007) Rectal lactate levels in endoluminal microdialysate during routine coronary surgery. Anaesthesia 62:250–258

    PubMed  Google Scholar 

  • Sopasakis VR, Sandqvist M, Gustafson B, Hammarstedt A, Schmelz M, Yang X, Jansson PA (2004) High local concentrations and effects on differentiation implicate interleukin-6 as a paracrine regulator. Obes Res 12:454–460

    PubMed  CAS  Google Scholar 

  • Stallknecht B, Larsen JJ, Mikines KJ, Simonsen L, Bülow J, Galbo H (2000) Effect of training on insulin sensitivity of glucose uptake and lipolysis in human adipose tissue. Am J Physiol 279:E376–E385

    CAS  Google Scholar 

  • Stenken JA, Church MK, Gill CA, Clough GF (2010) How minimally invasive is microdialysis sampling? A cautionary note for cytokine collection in human skin and other clinical studies. AAPSJ 12:73–78

    PubMed  CAS  Google Scholar 

  • Strindberg L, Lönnroth P (2000) Validation of the endogenous reference technique for the calibration of microdialysis catheters. Scand J Clin Lab Invest 60:205–211

    PubMed  CAS  Google Scholar 

  • Summers LK, Arner P, Ilic V, Clark ML, Humphreys SM, Frayn K (1998) Adipose tissue metabolism in the postprandial period: microdialysis and arteriovenous techniques compared. Am J Physiol 274:E651–E655

    PubMed  CAS  Google Scholar 

  • Suzuki H, Lijima K, Moriya A, McElroy K, Scobie G, Fyfe V, McColl KE (2003) Conditions for acid catalysed luminal nitrosation are maximal at the gastric cardia. Gut 52:1095–1101

    PubMed  CAS  Google Scholar 

  • Toldt C (1870) Contribution to the histology and physiology of adipose tissue. Akad Wiss Wien Math Naturwiss KI 62:445

    Google Scholar 

  • Ungerstedt U (1984) Measurement of neurotransmitter release by intracranial dialysis. In: Marsden CA (ed) Measurement of neurotransmitter release in vivo. Wiley, London, pp 81–105

    Google Scholar 

  • Ungerstedt U (1991) Microdialysis—principles and applications for studies in animals and man. J Intern Med 230:365–373

    PubMed  CAS  Google Scholar 

  • Ungerstedt U, Pycock C (1974) Functional correlates of dopamine neurotansmission. Bull Schweiz Akad Med Wiss 1278:1–13

    Google Scholar 

  • Updike SJ, Hicks GP (1967) The enzyme electrode. Nature 214:986–988

    PubMed  CAS  Google Scholar 

  • Vestergaard ET, Gormsen LC, Jessen N, Lund S, Hansen TK, Moller N, Jorgensen JO (2008) Ghrelin infusion in humans induces acute insulin resistance and lipolysis independent of growth hormone signalling. Diabetes 57:3205–3210

    PubMed  CAS  Google Scholar 

  • Virtanen KA, Peltoniemi P, Marjamäki P, Asola M, Strindberg L, Parkkola R, Huupponen R, Knuuti J, Lönnroth P, Nuutila P (2001) Human adipose tissue glucose uptake determined using [18F]-fluoro-deoxy-glucose ([18F]FDG) and PETPET in combination with microdialysis. Diabetologia 44:2171–2179

    PubMed  CAS  Google Scholar 

  • Weinhandl H, Pachler C, Mader JK, Ikeoka D, Mautner A, Falk A, Suppan M, Pieber T, Ellmerer M (2007) Physiological hyperinsulinemia has no detectable effect on access of macromolecules to insulin-sensitive tissues in healthy humans. Diabetes 56:2213–2217

    PubMed  CAS  Google Scholar 

  • Wellhöner P, Rolle D, Lönnroth P, Strindberg L, Elam M, Dodt C (2006) Laser-doppler flowmetry reveals rapid perfusion changes in adipose tissue of lean and obese females. Am J Physiol 291:E1025–E1030

    Google Scholar 

  • Wellhöner P, Welzel M, Rolle D, Dodt C (2007) In vivo effects of corticotrtropin-releasing hormone on femoral adipose tissue adipose tissue metabolism in women. Int J Obes 31:718–722

    Google Scholar 

  • Yuen DY, Dwyer RM, Matthews VB, Zhang L et al (2009) Interleukin-6 attenuates insulin-mediated increases in endothelial cell signaling but augments skeletal muscle insulin action via different effects on tumor necrosis factor-alpha expression. Diabetes 58:1086–1095

    PubMed  CAS  Google Scholar 

  • Zeitlinger M, Müller M, Joukhadar C (2005) Lung microdialysis—a powerful tool for the determination of exogenous and endogenous compounds in the lower respiratory tract (mini-review). AAPS J 7:E600–E608

    PubMed  CAS  Google Scholar 

  • Zetterström T, Vernet L, Ungerstedt U, Tossman U, Jonzon B, Fredholm BB (1982) Purine levels in the intact rat brain, studies with an implanted perfused hollow fibre. Neurosci Lett 29:111–115

    PubMed  Google Scholar 

Download references

Acknowledgments

In the mid-1980s, I was fortunate to start my research career in Ulf Smiths laboratory when Peter Lönnroth decided to test the feasibility of microdialysis, a well-known procedure in neurobiology, for monitoring of adipose tissue metabolism in humans. I am grateful to both of you for the fact that we, more or less, have managed to walk the long and winding road together. Also thank you to all research friends at the University of Gothenburg and all over the world for nice microdialysis collaborations. Finally, I would like to thank my research group, in particular Lena Strindberg whose expertise in running clinical microdialysis experiments is unique.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Per-Anders Jansson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

Jansson, PA. (2013). Microdialysis in Metabolic Research. In: Müller, M. (eds) Microdialysis in Drug Development. AAPS Advances in the Pharmaceutical Sciences Series, vol 4. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4815-0_12

Download citation

Publish with us

Policies and ethics