Skip to main content
Log in

Information Theory, the Shape Function, and the Hirshfeld Atom

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Following the work of Nalewajski and Parr, there has been a surge of interest in the use of information theory to describe chemical bonding and chemical reactions. However, the measure of “information” used by Nalewajski and Parr is not any of the usual conventional entropies, chiefly because the electron density is not normalized to one. The consequences of this are discussed, and a solution is constructed using the shape function and an “entropy of mixing” term. The same revision, however, cannot be made when if the Tsallis entropy, instead of the Shannon form, is used. This serves to emphasize that the Hirshfeld atom is a very specific result, associated only with logarithmic measures of information. A less specific derivation due to Nalewajski provides one resolution to this quandary; this derivation is analyzed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hirshfeld FL (1977). Theor Chim Acc 44:129

    Article  CAS  Google Scholar 

  2. Nalewajski RF (2003). J Phys Chem A 107:3792

    Article  CAS  Google Scholar 

  3. De Proft F, Vivas-Reyes R, Peeters A, Van Alsenoy C, Geerlings P (2003). J Comp Chem 24:463

    Article  CAS  Google Scholar 

  4. Roy RK (2003). J Phys Chem A 107:397

    Article  CAS  Google Scholar 

  5. Nalewajski RF, Switka E (2002). Phys Chem Chem Phys 4:4952

    Article  CAS  Google Scholar 

  6. Bultinck P, Langenaeker W, Lahorte P et al. (2002). J Phys Chem A 106:7895

    Article  CAS  Google Scholar 

  7. De Proft F, Van Alsenoy C, Peeters A, Langenaeker W, Geerlings P (2002). J Comp Chem 23:1198

    Article  CAS  Google Scholar 

  8. Ayers PW, Morrison RC, Roy RK (2002). J Chem Phys 116:8731

    Article  CAS  Google Scholar 

  9. Olah J, Van Alsenoy C, Sannigrahi AB (2002). J Phys Chem A 106:3885

    Article  CAS  Google Scholar 

  10. Ayers PW (2000). J Chem Phys 113:10886

    Article  CAS  Google Scholar 

  11. Roy RK, Hirao K, Pal S (2000). J Chem Phys 113:1372

    Article  Google Scholar 

  12. Roy RK, Pal S, Hirao K (1999). J Chem Phys 110:8236

    Article  CAS  Google Scholar 

  13. Nalewajski RF, Broniatowska E (2003). Chem Phys Lett 376:33

    Article  CAS  Google Scholar 

  14. Nalewajski RF (2003). Chem Phys Lett 372:28

    Article  CAS  Google Scholar 

  15. Nalewajski RF (2002). Phys Chem Chem Phys 4:1710

    Article  CAS  Google Scholar 

  16. Nalewajski RF, Switka E, Michalak A (2002). Int J Quantum Chem 87:198

    Article  CAS  Google Scholar 

  17. Nalewajski RF, Parr RG (2001). J Phys Chem A 105:7391

    Article  CAS  Google Scholar 

  18. Nalewajski RF, Loska R (2001). Theor Chem Acc 105:374

    CAS  Google Scholar 

  19. Nalewajski RF (2000). J Phys Chem A 104:11940

    Article  CAS  Google Scholar 

  20. Davidson ER, Chakravorty S (1992). Theoretica Chimica Acta 83:319

    Article  CAS  Google Scholar 

  21. Nalewajski RF (2003). Molecular Phys 101:2369

    Article  CAS  Google Scholar 

  22. Nalewajski RF, Parr RG (2000). Proc Natl Acad Sci USA 97:8879

    Article  CAS  Google Scholar 

  23. Kullback S (1997). Information theory and statistics. Dover, Mineola

    Google Scholar 

  24. Khinchin AI (1957). Mathematical foundations of information theory. Dover, New York

    Google Scholar 

  25. Zucker R (1965). In: Abramowitz M, Stegun IA (eds). Handbook of mathematical functions. Dover, New York, p 65

  26. Stuart A, Ord JK (1994). Kendall’s Advanced theory of statistics, vol 1. Distribution theory. Halsted, New York

    Google Scholar 

  27. Abe S, Rajagopal AK (2003). Science 300:249

    Article  CAS  Google Scholar 

  28. Vives E, Planes A (2002). Phys Rev Lett 8802:art-020601

    Google Scholar 

  29. Yamano T (2001). Phys Rev E 6304:art-046105

    Google Scholar 

  30. Rajagopal AK, Abe S (1999). Phys Rev Lett 83:1711

    Article  CAS  Google Scholar 

  31. Tsallis C (1988). J Stat Phys 52:479

    Article  Google Scholar 

  32. Ayers PW (2000). J Chem Phys 113:10886

    Article  CAS  Google Scholar 

  33. Ayers PW (2000). Proc Natl Acad Sci USA 97:1959

    Article  CAS  Google Scholar 

  34. Parr RG, Bartolotti LJ (1983). J Phys Chem 87:2810

    Article  CAS  Google Scholar 

  35. Parr RG, Ayers PW, Nalewajski RF (2005). J Phys Chem A 109:3957

    Article  CAS  Google Scholar 

  36. Sears SB, Parr RG, Dinur U (1980). Isr J Chem 19:165

    CAS  Google Scholar 

  37. Bader RFW (1990). Atoms in molecules: a quantum theory. Clarendon, Oxford

    Google Scholar 

  38. Bader RFW, Tal Y, Anderson SG, Nguyen-Dang TT (1980). Isr J Chem 19:8

    CAS  Google Scholar 

  39. Gelfand IM, Fomin SV (1991). Calculus of variations. Dover, Mineola

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul W. Ayers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ayers, P.W. Information Theory, the Shape Function, and the Hirshfeld Atom. Theor Chem Acc 115, 370–378 (2006). https://doi.org/10.1007/s00214-006-0121-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-006-0121-5

Keywords

Navigation