Skip to main content
Log in

Acute high-dose glycine attenuates mismatch negativity (MMN) in healthy human controls

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Schizophrenia is commonly associated with impairments in pre-attentive change detection as represented by reduced mismatch negativity (MMN). The neurochemical basis of MMN has been linked to N-methyl-d-aspartate (NMDA) receptor function. Glycine augments NMDA receptor function via stimulation of the glycine modulatory site of the NMDA receptor and has been shown to effectively reduce negative symptoms in schizophrenia. However, no study has investigated the possible effects of high-dose glycine on MMN. Further, the physiological consequences of administering high-dose glycine in subjects with normal NMDA receptor function are unknown.

Objectives

The aim of the present project was to investigate the acute effects of a single large dose of glycine on the human MMN in healthy subjects.

Materials and methods

Sixteen healthy male subjects participated in a double blind, placebo-controlled, crossover design in which each subject was tested under two acute treatment conditions separated by a 1-week washout period; placebo and 0.8 g/kg glycine. The subjects were exposed to a duration-MMN paradigm with 50-ms standard tones (91%) and 100-ms deviant tones (9%).

Results

The results showed that glycine significantly attenuated duration MMN amplitude at frontal electrodes. There was no effect of glycine on MMN latencies or on amplitudes or latencies of N1, N2 and P3a.

Conclusions

These findings suggest that an acute high dosage of glycine attenuates MMN in healthy controls, raising the possibility that optimal effects of glycine and other glycine agonists may depend on the integrity of the NMDA receptor system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Akbarian S, Sucher NJ, Bradley D, Tafazzoli A, Trinh D, Hetrick WP, Potkin SG, Sandman CA, Bunney WE Jr, Jones EG (1996) Selective alterations in gene expression for NMDA receptor subunits in prefrontal cortex of schizophrenics. J Neurosci 16:19–30

    PubMed  CAS  Google Scholar 

  • Arvanov VL, Liang X, Schwartz J, Grossman S, Wang RY (1997) Clozapine and haloperidol modulate N-methyl-d-aspartate- and non-N-methyl-d-aspartate receptor-mediated neurotransmission in rat prefrontal cortical neurons in vitro. J Pharmacol Exp Ther 283:226–234

    PubMed  CAS  Google Scholar 

  • Baldeweg T, Klugman A, Gruzelier JH, Hirsch SR (2002) Impairment in frontal but not temporal components of mismatch negativity in schizophrenia. Int J Psychophysiol 43:111–122

    Article  PubMed  Google Scholar 

  • Betz H, Laube B (2006) Glycine receptors: recent insights into their structural organization and functional diversity. J Neurochem 97:1600–1610

    Article  PubMed  CAS  Google Scholar 

  • Bramon E, Croft RJ, McDonald C, Virdi GK, Gruzelier JG, Baldeweg T, Sham PC, Frangou S, Murray RM (2004) Mismatch negativity in schizophrenia: a family study. Schizophr Res 67:1–10

    Article  PubMed  Google Scholar 

  • Camp-Bruno JA, Herting RL (1994) Cognitive effects of milacemide and methylphenidate in healthy young adults. Psychopharmacology (Berl) 115:46–52

    Article  CAS  Google Scholar 

  • Catts SV, Shelley AM, Ward PB, Liebert B, McConaghy N, Andrews S, Michie PT (1995) Brain potential evidence for an auditory sensory memory deficit in schizophrenia. Am J Psychiatry 152:213–219

    PubMed  CAS  Google Scholar 

  • Costa J, Khaled E, Sramek J, Bunney W Jr, Potkin SG (1990) An open trial of glycine as an adjunct to neuroleptics in chronic treatment-refractory schizophrenics. J Clin Psychopharmacol 10:71–72

    Article  PubMed  CAS  Google Scholar 

  • Danysz W, Parsons AC (1998) Glycine and N-methyl-d-aspartate receptors: physiological significance and possible therapeutic applications. Pharmacol Rev 50:597–664

    PubMed  CAS  Google Scholar 

  • D’Souza DC, Charney DS, Krystal JH (1995) Glycine site agonists of the NMDA receptor: a review. CNS Drug Reviews 1:150–186

    Article  Google Scholar 

  • D’Souza DC, Gil R, Cassello K, Morrissey K, Abi-Saab D, White J, Sturwold R, Bennett A, Karper LP, Zuzarte E, Charney DS, Krystal JH (2000) IV glycine and oral d-cycloserine effects on plasma and CSF amino acids in healthy humans. Biol Psychiatry 47:450–462

    Article  PubMed  CAS  Google Scholar 

  • Evins AE, Fitzgerald SM, Wine L, Rosselli R, Goff DC (2000) Placebo-controlled trial of glycine added to clozapine in schizophrenia. Am J Psychiatry 157:826–828

    Article  PubMed  CAS  Google Scholar 

  • File SE, Fluck E, Fernandes C (1999) Beneficial effects of glycine (bioglycin) on memory and attention in young and middle-aged adults. J Clin Psychopharmacol 19:506–512

    Article  PubMed  CAS  Google Scholar 

  • Fucetola R, Newcomer JW, Craft S, Melson AK (1999) Age- and dose-dependent glucose-induced increases in memory and attention in schizophrenia. Psychiatry Res 88:1–13

    Article  PubMed  CAS  Google Scholar 

  • Gannon MC, Nuttall JA, Nuttall FQ (2002) The metabolic response to ingested glycine. American Journal of Clinical Nutrition 76:1302–1307

    PubMed  CAS  Google Scholar 

  • Giard M-H, Lavikainen J, Reinikainen K, Perrin F, Bertrand O, Pernier J, Näätänen R (1995) Separate representation of stimulus frequency, intensity and duration in auditory sensory memory: an event-related potential and dipole-model analysis. J Cogn Neurosci 7:133–143

    Google Scholar 

  • Goff DC, Coyle JT (2001) The emerging role of glutamate in the pathophysiology and treatment of schizophrenia. Am J of Psychiatry 158:1367–1377

    Article  CAS  Google Scholar 

  • Grimwood S, Slater P, Deakin JF, Hutson PH (1999) NR2B-containing NMDA receptors are up-regulated in temporal cortex in schizophrenia. Neuroreport 10:461–465

    Article  PubMed  CAS  Google Scholar 

  • Hall MH, Rijsdijk F, Picchioni M, Schulze K, Ettinger U, Toulopoulou T, Bramon E, Murray RM, Sham P (2007) Substantial shared genetic influences on schizophrenia and event-related potentials. Am J Psychiatry 164:804–812

    Article  PubMed  Google Scholar 

  • Heresco-Levy U, Javitt DC, Ermilov M, Mordel C, Horowitz A, Kelly D (1996) Double-blind, placebo-controlled, crossover trial of glycine adjuvant therapy for treatment-resistant schizophrenia. Br J Psychiatry 169:610–617

    Article  PubMed  CAS  Google Scholar 

  • Heresco-Levy U, Javitt DC, Ermilov M, Mordel C, Silipo G, Lichtenstein M (1999) Efficacy of high-dose glycine in the treatment of enduring negative symptoms of schizophrenia. Arch Gen Psychiatry 56:29–36

    Article  PubMed  CAS  Google Scholar 

  • Heresco-Levy U, Ermilov M, Lichtenberg P, Bar G, Javitt DC (2004) High-dose glycine added to olanzapine and risperidone for the treatment of schizophrenia. Biol Psychiatry 55:165–171

    Article  PubMed  CAS  Google Scholar 

  • Heresco-Levy U, Bar G, Levin R, Ermilov M, Ebstein RP, Javitt DC (2007) High glycine levels are associated with prepulse inhibition deficits in chronic schizophrenia patients. Schizophr Res 91:14–21

    Article  PubMed  Google Scholar 

  • Ishimaru M, Kurumaji A, Toru M (1994) Increases in strychnine-insensitive glycine binding sites in cerebral cortex of chronic schizophrenics: evidence for glutamate hypothesis. Biol Psychiatry 35:84–95

    Article  PubMed  CAS  Google Scholar 

  • Javitt DC, Zukin SR (1991) Recent advances in the phencyclidine model of schizophrenia. Am J Psychiatry 148:1301–1308

    PubMed  CAS  Google Scholar 

  • Javitt DC, Doneshka P, Zylberman I, Ritter W, Vaughan HG Jr (1993) Impairment of early cortical processing in schizophrenia: an event-related potential confirmation study. Biol Psychiatry 33:513–519

    Article  PubMed  CAS  Google Scholar 

  • Javitt DC, Zylberman I, Zukin SR, Heresco-Levy U, Lindenmayer JP (1994) Amelioration of negative symptoms in schizophrenia by glycine. Am J Psychiatry 151:1234–1236

    PubMed  CAS  Google Scholar 

  • Javitt DC, Steinschneider M, Schroeder CE, Arezzo JC (1996) Role of cortical N-methyl-d-aspartate receptors in auditory sensory memory and mismatch negativity generation: Implications for schizophrenia. Proc Natl Acad Sci USA 93:11962–11967

    Article  PubMed  CAS  Google Scholar 

  • Javitt DC, Silipo G, Cienfuegos A, Shelley AM, Bark N, Park M, Lindenmayer JP, Suckow R, Zukin SR (2001) Adjunctive high-dose glycine in the treatment of schizophrenia. Int J Neuropsychopharmacol 4:385–391

    Article  PubMed  CAS  Google Scholar 

  • Javitt DC, Hashim A, Sershen H (2005) Modulation of striatal dopamine release by glycine transport inhibitors. Neuropsychopharmacology 30:649–656

    Article  PubMed  CAS  Google Scholar 

  • Kathmann N, Frodl-Bauch T, Hegerl U (1999) Stability of the mismatch negativity under different stimulus and attention conditions. Clin Neurophysiol 110:317–323

    Article  Google Scholar 

  • Korostenskaja M, Dapsys K, Siurkute A, Maciulis V, Ruksenas O, Kahkonen S (2005) Effects of olanzapine on auditory P300 and mismatch negativity (MMN) in schizophrenia spectrum disorders. Prog Neuropsychopharmacol Biol Psychiatry 29:543–548

    Article  PubMed  CAS  Google Scholar 

  • Korostenskaja M, Nikulin VV, Kicic D, Nikulina AV, Kahkonen S (2007) Effects of NMDA receptor antagonist memantine on mismatch negativity. Brain Res Bull 72:275–283

    Article  PubMed  CAS  Google Scholar 

  • Lahti AC, Koffel B, LaPorte D, Tamminga CA (1995) Subanesthetic doses of ketamine stimulate psychosis in schizophrenia. Neuropsychopharmacology 13:9–19

    Article  PubMed  CAS  Google Scholar 

  • Laruelle M, Kegeles LS, Abi-Dargham A (2003) Glutamate, dopamine, and schizophrenia: from pathophysiology to treatment. Ann N Y Acad Sci 1003:138–158

    Article  PubMed  CAS  Google Scholar 

  • Laube B, Maksay G, Schemm R, Betz H (2002) Modulation of glycine receptor function: a novel approach for therapeutic intervention at inhibitory synapses? Trends Pharmacol Sci 23:519–527

    Article  PubMed  CAS  Google Scholar 

  • Light GA, Braff DL (2005) Mismatch negativity deficits are associated with poor functioning in schizophrenia patients. Arch Gen Psychiatry 62:127–136

    Article  PubMed  Google Scholar 

  • Lipton SA (2004) Paradigm shift in NMDA receptor antagonist drug development: molecular mechanism of uncompetitive inhibition by memantine in the treatment of Alzheimer’s disease and other neurological disorders. J Alzheimers Dis 6:S61–S74

    PubMed  CAS  Google Scholar 

  • Malhotra AK, Pinals DA, Adler CM, Elman I, Clifton A, Pickar D, Breier A (1997) Ketamine-induced exacerbation of psychotic symptoms and cognitive impairment in neuroleptic-free schizophrenics. Neuropsychopharmacology 17:141–150

    Article  PubMed  CAS  Google Scholar 

  • Martina M, Gorfinkel Y, Halman S, Lowe JA, Periyalwar P, Schmidt CJ, Bergeron R (2004) Glycine transporter type 1 blockade changes NMDA receptor-mediated responses and LTP in hippocampal CA1 pyramidal cells by altering extracellular glycine levels. J Physiol 557:489–500

    Article  PubMed  CAS  Google Scholar 

  • Meador-Woodruff JH, Hogg AJ Jr, Smith RE (2001) Striatal ionotropic glutamate receptor expression in schizophrenia, bipolar disorder, and major depressive disorder. Brain Res Bull 55:631–640

    Article  PubMed  CAS  Google Scholar 

  • Meikle A, Riby LM, Stollery B (2004) The impact of glucose ingestion and gluco-regulatory control on cognitive performance: a comparison of younger and middle aged adults. Hum Psychopharmacol 19:523–535

    Article  PubMed  CAS  Google Scholar 

  • Michie PT, Budd TW, Todd J, Rock D, Wichmann H, Box J, Jablensky AV (2000) Duration and frequency mismatch negativity in schizophrenia. Clin Neurophysiol 111:1054–1065

    Article  PubMed  CAS  Google Scholar 

  • Millan MJ (2005) N-Methyl-d-aspartate receptors as a target for improved antipsychotic agents: novel insights and clinical perspectives. Psychopharmacology (Berl) 179:30–53

    Article  CAS  Google Scholar 

  • Näätänen R (1992) Attention and brain function. Lawrence Erlbaum Associates, NJ

    Google Scholar 

  • Näätänen R (2000) Mismatch negativity (MMN): perspectives for application. Int J Psychophysiol 37:3–10

    Article  PubMed  Google Scholar 

  • Neumeister A, Carson R, Henry S, Planeta-Wilson B, Binneman B, Maguire RP, Luckenbaugh DA, D’Souza C, Krystal JH, Frost JJ (2006) Cerebral metabolic effects of intravenous glycine in healthy human subjects. J Clin Psychopharmacol 26:595–599

    Article  PubMed  CAS  Google Scholar 

  • Noga JT, Hyde TM, Herman MM, Spurney CF, Bigelow LB, Weinberger DR, Kleinman JE (1997) Glutamate receptors in the postmortem striatum of schizophrenic, suicide, and control brains. Synapse 27:168–176

    Article  PubMed  CAS  Google Scholar 

  • Nong Y, Huang YQ, Ju W, Kalia LV, Ahmadian G, Wang YT, Salter MW (2003) Glycine binding primes NMDA receptor internalization. Nature 422:302–307

    Article  PubMed  CAS  Google Scholar 

  • Nong Y, Huang YQ, Salter MW (2004) NMDA receptors are movin’ in. Curr Opin Neurobiol 14:353–361

    Article  PubMed  CAS  Google Scholar 

  • Olney JW, Farber NB (1995) Glutamate receptor dysfunction and schizophrenia. Arch Gen Psychiatry 52:998–1007

    PubMed  CAS  Google Scholar 

  • Paavilainen P, Mikkonen M, Kilpeläinen M, Lehtinen R, Saarela M, Tapola L (2003) Evidence for the different additivity of the temporal and frontal generators of mismatch negativity: a human auditory event-related potential study. Neurosci Lett 349:79–82

    Article  PubMed  CAS  Google Scholar 

  • Pang EW, Fowler B (1999) Dissociation of the mismatch negativity and processing negativity attentional waveforms with nitrous oxide. Psychophysiology 36:552–558

    Article  PubMed  CAS  Google Scholar 

  • Potkin SG, Jin Y, Bunney BG, Costa J, Gulasekaram B (1999) Effect of clozapine and adjunctive high-dose glycine in treatment-resistant schizophrenia. Am J Psychiatry 156:145–147

    PubMed  CAS  Google Scholar 

  • Rajendra S, Lynch JW, Schofield PR (1997) The glycine receptor. Pharmacol Ther 73:121–146

    Article  PubMed  CAS  Google Scholar 

  • Rinne T, Alho K, Ilmoniemi RJ, Virtanene J, Näätänen R (2000) Separate time behaviors of the temporal and frontal mismatch negativity sources. Neuroimage 12:14–19

    Article  PubMed  CAS  Google Scholar 

  • Rosse RB, Theut SK, Banay-Schwartz M, Leighton M, Scarcella E, Cohen CG, Deutsch SI (1989) Glycine adjuvant therapy to conventional neuroleptic treatment in schizophrenia: an open-label, pilot study. Clin Neuropharmacol 12:416–424

    Article  PubMed  CAS  Google Scholar 

  • Saletu B, Grunberger J (1984) Early clinical pharmacological trials with a new anti-epileptic, milacemide, using pharmaco-EEG and psychometry. Methods Find Exp Clin Pharmacol 6:317–330

    PubMed  CAS  Google Scholar 

  • Sato Y, Yabe H, Todd J, Michie P, Shinozaki N, Sutoh T, Hiruma T, Nashida T, Matsuoka T, Kaneko S (2003) Impairment in activation of a frontal attention-switch mechanism in schizophrenic patients. Biol Psychol 62:49–63

    Article  PubMed  Google Scholar 

  • Schwartz BL, Hashtroudi S, Herting RL, Handerson H, Deutsch SI (1991) Glycine prodrug facilitates memory retrieval in humans. Neurology 41:1341–1343

    PubMed  CAS  Google Scholar 

  • Shelley AM, Ward PB, Catts SV, Michie PT, Andrews S, McConaghy N (1991) Mismatch negativity: an index of a preattentive processing deficit in schizophrenia. Biol Psychiatry 30:1059–1062

    Article  PubMed  CAS  Google Scholar 

  • Shoham S, Javitt DC, Heresco-Levy U (2001) Chronic high-dose glycine nutrition: effects on rat brain cell morphology. Biol Psychiatry 49:876–885

    Article  PubMed  CAS  Google Scholar 

  • Sinkkonen J, Tervaniemi M (2000) Towards optimal recording and analysis of the mismatch negativity. Audiol Neurootol 5:235–246

    Article  PubMed  CAS  Google Scholar 

  • Spitzer RL, Williams JB, Kroenke K, Linzer M, deGruy FV 3rd, Hahn SR, Brody D, Johnson JG (1994) Utility of a new procedure for diagnosing mental disorders in primary care. The PRIME-MD 1000 Study. JAMA 272:1749–1756

    Article  PubMed  CAS  Google Scholar 

  • Stephens R, Tunney RJ (2004) Role of glucose in chewing gum-related facilitation of cognitive function. Appetite 43:211–213

    Article  PubMed  CAS  Google Scholar 

  • Stone JM, Morrison PD, Pilowsky LS (2007) Glutamate and dopamine dysregulation in schizophrenia—a synthesis and selective review. J Psychopharmacol 21:440–452

    Article  PubMed  CAS  Google Scholar 

  • Tamminga CA, Holcomb HH, Gao XM, Lahti AC (1995) Glutamate pharmacology and the treatment of schizophrenia: current status and future directions. Int Clin Psychopharmacol 10(Suppl 3):29–37

    Article  PubMed  Google Scholar 

  • Todd J, Michie PT, Jablensky AV (2003) Association between reduced duration mismatch negativity (MMN) and raised temporal discrimination thresholds in schizophrenia. Clin Neurophysiol 114:2061–2070

    Article  PubMed  Google Scholar 

  • Truong DD, Fahn S (1988) Therapeutic trial with glycine in myoclonus. Mov Disord 3:222–232

    Article  PubMed  CAS  Google Scholar 

  • Tuominen HJ, Tiihonen J, Wahlbeck K (2005) Glutamatergic drugs for schizophrenia: a systematic review and meta-analysis. Schizophr Res 72:225–234

    Article  PubMed  Google Scholar 

  • Umbricht D, Krljes S (2005) Mismatch negativity in schizophrenia: a meta-analysis. Schizophr Res 76:1–23

    Article  PubMed  Google Scholar 

  • Umbricht D, Schmid L, Koller R, Vollenweider FX, Hell D, Javitt DC (2000) Ketamine-induced deficits in auditory and visual context-dependent processing in healthy volunteers: implications for models of cognitive deficits in schizophrenia. Arch Gen Psychiatry 57:1139–1147

    Article  PubMed  CAS  Google Scholar 

  • Umbricht D, Koller R, Vollenweider FX, Schmid L (2002) Mismatch negativity predicts psychotic experiences induced by NMDA receptor antagonist in healthy volunteers. Biol Psychiatry 51:400–406

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by a research grant from Blackmore’s Ltd. Fellowship funding for PJN was provided by the National Health and Medical Research Council (NHMRC) of Australia (Grant 345709).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodney J. Croft.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leung, S., Croft, R.J., O’Neill, B.V. et al. Acute high-dose glycine attenuates mismatch negativity (MMN) in healthy human controls. Psychopharmacology 196, 451–460 (2008). https://doi.org/10.1007/s00213-007-0976-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-007-0976-8

Keywords

Navigation