Skip to main content
Log in

Neutrophils-derived peroxynitrite contributes to acute hyperalgesia and cell influx in zymosan arthritis

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

We investigated the contribution of neutrophils to joint hyperalgesia and peroxynitrite formation in zymosan arthritis. Rats received 1 mg zymosan intra-articular, and joint hyperalgesia was measured using the rat knee-joint articular incapacitation test. After 6 h, joint exudates were collected by aspiration for the assessment of cell influx, myeloperoxidase activity, and nitrite (as an index of nitric oxide formation) levels. Nitrotyrosine content, used as an index of peroxynitrite formation, was measured in joint exudates, using enzyme-linked immunosorbent assay. A group of rats was rendered neutropenic through the administration of a rabbit anti-rat neutrophil antibody (2 ml kg−1, i.p.) 30 min before injection of 1 mg zymosan intra-articular. Other groups received uric acid (100 or 250 mg kg−1, i.p.), the peroxynitrite scavenger, 30 min before 1 mg zymosan intra-articular. Controls received the vehicle. The significant inhibition of joint hyperalgesia in neutropenic animals was associated to significantly decreased cell influx, myeloperoxidase activity, nitric oxide, and nitrotyrosine levels in the joint exudates, as compared to naive rats. Uric acid administration inhibited both hyperalgesia and cell influx, as compared to controls. Neutrophils are involved in both nitric oxide and peroxynitrite formation in zymosan arthritis, thereby contributing to acute joint hyperalgesia. Scavenging of reactive nitrogen species (e.g. peroxynitrite) inhibits neutrophil migration and joint hyperalgesia in the acute phase of zymosan arthritis in rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

DMARDS:

disease modifying anti-rheumatic drugs

i.art:

intra-articular

L-NAME:

N-nitro-l-arginine methyl ester

LTB4 :

leukotriene B4

MPO:

myeloperoxidase

NO:

nitric oxide

NOS:

nitric oxide synthase

NT:

non-treated

PET:

paw elevation time

PN:

peroxynitrite

RA:

rheumatoid arthritis

SIN-1:

3-Morpholinosydnonimine

SOD:

superoxide dismutase

TMB:

tetramethylbenzene

References

  • Baldus S, Eiserich JP, Mani A, Castro L, Figueroa M, Chumley P, Ma W, Tousson A, White CR, Bullard DC, Brennan ML, Lusis AJ, Moore KP, Freeman BA (2001) Endothelial transcytosis of myeloperoxidase confers specificity to vascular ECM proteins as targets of tyrosine nitration. J Clin Invest 108:1759–1770

    Article  PubMed  CAS  Google Scholar 

  • Beckman JS, Ye YZ, Anderson PG, Chen J, Accavitti MA, Tarpey MM, White CR (1994) Extensive nitration of protein tyrosines in human atherosclerosis detected by immunohistochemistry. Biol Chem Hoppe-Seyler 375:81–88

    Google Scholar 

  • Bezerra MM, Brain SD, Greenacre S, Jerônimo SM, de Melo LB, Keeble J, da Rocha FA (2004) Reactive nitrogen species scavenging, rather than nitric oxide inhibition, protects from articular cartilage damage in rat zymosan-induced arthritis. Br J Pharmacol 141:172–182

    Article  PubMed  CAS  Google Scholar 

  • Boughton-Smith NK, Ghelani A (1995) Role of induced nitric oxide synthase and increased NO levels in zymosan peritonitis in the rat. Inflamm Res 44:S149–S150

    Article  PubMed  CAS  Google Scholar 

  • Boulos C, Jiang H, Balazy M (2000) Diffusion of peroxynitrite into the human platelet inhibits cyclooxygenase via nitration of tyrosine residues. J Pharmacol Exp Ther 293:222–229

    PubMed  CAS  Google Scholar 

  • Brennan ML, Wu W, Fu X, Shen Z, Song W, Frost H, Vadseth C, Narine L, Lenkiewicz E, Borchers MT, Lusis AJ, Lee JJ, Lee NA, Abu-Soud HM, Ischiropoulos H, Hazen SL (2002) A tale of two controversies: defining both the role of peroxidases in nitrotyrosine formation in vivo using eosinophil peroxidase and myeloperoxidase-deficient mice, and the nature of peroxidase-generated reactive nitrogen species. J Biol Chem 277:17415–17427

    Article  PubMed  CAS  Google Scholar 

  • Crooks SW, Stockley RA (1998) Leukotriene B4. Int J Biochem Cell Biol 30:173–178

    Article  PubMed  CAS  Google Scholar 

  • da Rocha FA, de Brum-Fernandes AJ (2002) Evidence that peroxynitrite affects human osteoblast proliferation and differentiation. J Bone Miner Res 17:434–442

    Article  PubMed  Google Scholar 

  • Eiserich JP, Cross CE, Jones AD, Halliwell B, van der Vliet A (1996) Formation of nitrating and chlorinating species by reaction of nitrite with hypochlorous acid—a novel mechanism for nitric oxide-mediated protein modification. J Biol Chem 271:19199–19208

    Article  PubMed  CAS  Google Scholar 

  • Eiserich JP, Hristova M, Cross CE, Jones AD, Freeman BA, Halliwell B, van der Vliet A (1998) Formation of nitric oxide-derived inflammatory oxidants by myeloperoxidase in neutrophils. Nature 391:393–397

    Article  PubMed  CAS  Google Scholar 

  • Feldmann M, Brennan FM, Maini RN (1996) Role of cytokines in rheumatoid arthritis. Annu Rev Immunol 14:397–440

    Article  PubMed  CAS  Google Scholar 

  • Ferreira SH, Duarte ID, Lorenzetti BB (1991) The molecular mechanism of action of peripheral morphine analgesia: stimulation of the cGMP system via nitric oxide release. Eur J Pharmacol 201:121–122

    Article  PubMed  CAS  Google Scholar 

  • Greenacre SA, Rocha FA, Rawlingson A, Meinerikandathevan S, Poston RN, Ruiz E, Halliwell B, Brain SD (2002) Protein nitration in cutaneous inflammation in the rat: essential role of inducible nitric oxide synthase and polymorphonuclear leukocytes. Br J Pharmacol 136:985–994

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B (1982) Production of superoxide, hydrogen peroxide and hydroxyl radicals by phagocytic cells: a cause of chronic inflammatory disease? Cell Biol Int Rep 6:529–542

    Article  PubMed  CAS  Google Scholar 

  • Hampton MB, Kettle AJ, Winterbourn CC (1998) Inside the neutrophil phagosome: oxidants, myeloperoxidase, and bacterial killing. Blood 92:3007–3017

    PubMed  CAS  Google Scholar 

  • Harris ED, Budd RC, Firestein GS, Genovese MC, Sergent JS, Ruddy S, Sledge CB (2004) Kelley’s textbook of rheumatology, 7th edn. Saunders, Philadelphia

    Google Scholar 

  • Hazen SL, Zhang R, Shen Z, Wu W, Podrez EA, MacPherson JC, Schmitt D, Mitra SN, Mukhopadhyay C, Chen Y, Cohen PA, Hoff HF, Abu-Soud HM (1999) Formation of nitric oxide-derived oxidants by myeloperoxidase in monocytes: pathways for monocyte-mediated protein nitration and lipid peroxidation in vivo. Circ Res 85:950–958

    PubMed  CAS  Google Scholar 

  • Holthusen H, Arndt JO (1994) Nitric oxide evokes pain in humans on intracutaneous injection. Neurosci Lett 165:71–74

    Article  PubMed  CAS  Google Scholar 

  • Ischiropoulos H, Zhu L, Beckman JS (1992) Peroxynitrite formation from macrophage-derived nitric oxide. Arch Biochem Biophys 298:446–451

    Article  PubMed  CAS  Google Scholar 

  • Kaur H, Halliwell B (1994) Evidence for nitric oxide-mediated oxidative damage in chronic inflammation—nitrotyrosine in serum and synovial fluid from rheumatoid patients. FEBS Lett 350:9–12

    Article  PubMed  CAS  Google Scholar 

  • Khalil Z, Liu T, Helme RD (1999) Free radicals contribute to the reduction in peripheral vascular responses and the maintenance of thermal hyperalgesia in rats with chronic constriction injury. Pain 79:31–37

    Article  PubMed  CAS  Google Scholar 

  • Khan J, Brennand DM, Bradley N, Gao B, Bruckdorfer R, Jacobs M (1998) 3-Nitrotyrosine in the proteins of human plasma determined by an ELISA method. Biochem J 330:795–801

    PubMed  CAS  Google Scholar 

  • Kim HK, Park SK, Zhou JL, Taglialatela G, Chung K, Coggeshall RE, Chung JM (2004) Reactive oxygen species (ROS) play an important role in a rat model of neuropathic pain. Pain 111:116–124

    Article  PubMed  CAS  Google Scholar 

  • Lawand NB, Willis WD, Westlund KN (1997) Blockade of joint inflammation and secondary hyperalgesia by l-NAME, a nitric oxide synthase inhibitor. NeuroReport 8:895–899

    Article  PubMed  CAS  Google Scholar 

  • Liu T, Knight KR, Tracey DJ (2000) Hyperalgesia due to nerve injury-role of peroxynitrite. Neuroscience 97:125–131

    Article  PubMed  CAS  Google Scholar 

  • Ma G, Al-Shabrawey M, Johnson JA, Datar R, Tawfik HE, Guo D, Caldwell RB, Caldwell RW (2006) Protection against myocardial ischemia/reperfusion injury by short-term diabetes: enhancement of VEGF formation, capillary density, and activation of cell survival signaling. Naunyn Schmiedeberg’s Arch Pharmacol 373:415–427

    Article  CAS  Google Scholar 

  • O’Dell JR (2004) Therapeutic strategies for rheumatoid arthritis. N Engl J Med 350:2591–2602

    Article  PubMed  CAS  Google Scholar 

  • Ofulue AF, Ko M (1999) Effects of depletion of neutrophils or macrophages on development of cigarette smoke-induced emphysema. Am J Physiol 277:L97–L105

    PubMed  CAS  Google Scholar 

  • Peters RR, Krepsky PB, Siqueira-Júnior JM, Rocha JCS, Bezerra MM, Ribeiro RA, Brum-Fernandes AJ, Farias MR, Rocha FAC, Ribeiro-do-Valle RM (2003) Nitric oxide and cyclooxygenase may participate in the analgesic fraction from Wilbrandia ebracteata. Life Sci 73:2185–2197

    Article  PubMed  CAS  Google Scholar 

  • Rocha FA, Aragão AG Jr, Oliveira RC, Pompeu MM, Vale MR, Ribeiro RA (1999) Periarthritis promotes gait disturbance in zymosan-induced arthritis in rats. Inflamm Res 48:485–490

    Article  PubMed  CAS  Google Scholar 

  • Rocha JCS, Peixoto MEB, Jancar S, Cunha FQ, Ribeiro RA, Rocha FAC (2002) Dual effect of nitric oxide in articular inflammatory pain in zymosan-induced arthritis in rats. Br J Pharmacol 136:588–596

    Article  PubMed  CAS  Google Scholar 

  • Rocha FA, Teixeira MM, Rocha JC, Girão VC, Bezerra MM, Ribeiro RA, Cunha FQ (2004) Blockade of leukotriene B4 prevents articular incapacitation in rat zymosan-induced arthritis. Eur J Pharmacol 497:81–86

    Article  PubMed  CAS  Google Scholar 

  • Salvemini D, Manning PT, Zweifel BS, Seibert K, Connor J, Currie MG, Needleman P, Masferrer JL (1995) Dual inhibition of nitric oxide and prostaglandin production contributes to the anti-inflammatory properties of nitric oxide synthase inhibitors. J Clin Invest 96:301–308

    Article  PubMed  CAS  Google Scholar 

  • Salvemini D, Wang ZQ, Bourdon DM, Stern MK, Currie MG, Manning PT (1996) Evidence of peroxynitrite involvement in the carrageenan-induced rat paw edema. Eur J Pharmacol 303:217–220

    Article  PubMed  CAS  Google Scholar 

  • Sato E, Simpson KL, Grisham MB, Koyama S, Robbins RA (2000) Reactive nitrogen and oxygen species attenuate interleukin-8-induced neutrophil chemotactic activity in vitro. J Biol Chem 275:10826–10830

    Article  PubMed  CAS  Google Scholar 

  • Sousa AM, Prado WA (2001) The dual effect of a nitric oxide donor in nociception. Brain Res 897:9–19

    Article  PubMed  CAS  Google Scholar 

  • Squadrito GL, Pryor WA (1995) The formation of peroxynitrite in vivo from nitric oxide and superoxide. Chem Biol Interact 96:203–206

    Article  PubMed  CAS  Google Scholar 

  • Tonussi CR, Ferreira SH (1992) Rat-knee joint incapacitation test: an objective screen for central and peripheral analgesics. Pain 48:421–427

    Article  PubMed  CAS  Google Scholar 

  • Wagner R, Heckman HM, Myers RR (1998) Wallerian degeneration and hyperalgesia after peripheral nerve injury are glutathione-dependent. Pain 77:173–179

    Article  PubMed  CAS  Google Scholar 

  • Wang ZQ, Porreca F, Cuzzocrea S, Galen K, Lightfoot R, Masini E, Muscoli C, Mollace V, Ndengele M, Ischiropoulos H, Salvemini D (2004) A newly identified role for superoxide in inflammatory pain. J Pharmacol Exp Ther 309:869–878

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

The authors thank Fundação Cearense de Desenvolvimento Científico e Tecnológico (FUNCAP) and CNPq, Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco A. C. Rocha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bezerra, M.M., Brain, S.D., Girão, V.C.C. et al. Neutrophils-derived peroxynitrite contributes to acute hyperalgesia and cell influx in zymosan arthritis. Naunyn-Schmied Arch Pharmacol 374, 265–273 (2007). https://doi.org/10.1007/s00210-006-0123-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-006-0123-9

Keywords

Navigation