Skip to main content

Advertisement

Log in

Protection against myocardial ischemia/reperfusion injury by short-term diabetes: enhancement of VEGF formation, capillary density, and activation of cell survival signaling

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

The aims of this study were to determine effects of diabetes duration on myocardial ischemia/reperfusion (I/R) injury and test whether time-dependent differences in sensitivity of the streptozotocin diabetic rat heart to I/R are related to differences in vascular density, levels of vascular endothelial growth factor (VEGF) or endothelial nitric oxide synthase (eNOS) expression, NO formation, activation of Akt, and/or oxidative stress. After 2 or 6 weeks of streptozotocin-induced diabetes, I/R injury was induced by occlusion (30 min) and reperfusion of the left descending coronary artery. After 2 weeks of diabetes, infarct size and cleavage of caspase-3, a proapoptosis signal, were decreased as compared with normoglycemic controls or rats that had been diabetic for 6 weeks, whereas capillary density and levels of VEGF and eNOS protein and cardiac NOx levels were all increased. Phosphorylation of Akt, a prosurvival signal, was also significantly increased after 2 weeks of diabetes. Cardiac lipid peroxidation was comparable to controls after 2 weeks of diabetes, whereas levels of nitrotyrosine, a peroxynitrite biomarker, were reduced. After 6 weeks of diabetes, lipid peroxidation was increased and levels of VEGF and plasma NO were reduced as compared with controls or rats diabetic for 2 weeks. Our results indicate endogenous cardioprotective mechanisms become transiently activated in this early stage of diabetes and that this may protect the heart from I/R injury through enhancement of VEGF and eNOS expression, NO formation, activation of cell survival signals, and decreased oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

AAR:

area at risk

eNOS:

Endothelial NO synthase

HR:

heart rate

I/R:

Ischemia/reperfusion

IS:

infarct size

LV:

left ventricular

MBP:

mean blood pressure

MI:

myocardial infarction

NO:

Nitric oxide

NT:

Nitrotyrosine

STZ:

Streptozotocin

TTC:

2,3,5-triphenyltetrazolium chloride

VEGF:

Vascular endothelial growth factor

WC:

Week control

WD:

Week diabetes

References

  • Abbud ZA, Shindler DM, Wilson AC, Kostis JB (1995) Effect of diabetes mellitus on short- and long-term mortality rates of patients with acute myocardial infarction: a statewide study. Myocardial Infarction Data Acquisition System Study Group. Am Heart J 130(1):51–58

    Article  PubMed  CAS  Google Scholar 

  • Adeghate E (2004) Molecular and cellular basis of the aetiology and management of diabetic cardiomyopathy: a short review. Mol Cell Biochem 261(1–2):187–191

    Article  PubMed  CAS  Google Scholar 

  • Alon T, Hemo I, Itin A, Pe’er J, Stone J, Keshet E (1995) Vascular endothelial growth factor acts as a survival factor for newly formed retinal vessels and has implications for retinopathy of prematurity. Nat Med 1(10):1024–1028

    Article  PubMed  CAS  Google Scholar 

  • Brooks SE, Gu X, Samuel S, Marcus DM, Bartoli M, Huang PL, Caldwell RB (2001) Reduced severity of oxygen-induced retinopathy in eNOS-deficient mice. Invest Ophthalmol Vis Sci 42(1):222–228

    PubMed  CAS  Google Scholar 

  • Cai L, Li W, Wang G, Guo L, Jiang Y, Kang YJ (2002) Hyperglycemia-induced apoptosis in mouse myocardium: mitochondrial cytochrome C-mediated caspase-3 activation pathway. Diabetes 51(6):1938–1948

    Article  PubMed  CAS  Google Scholar 

  • Caldwell RB, Bartoli M, Behzadian MA, El-Remessy AE, Al-Shabrawey M, Platt DH, Caldwell RW (2003) Vascular endothelial growth factor and diabetic retinopathy: pathophysiological mechanisms and treatment perspectives. Diabetes Metab Res Rev 19(6):442–455

    Article  PubMed  CAS  Google Scholar 

  • Ceriello A, Quagliaro L, D’Amico M, Di Filippo C, Marfella R, Nappo F, Berrino L, Rossi F, Giugliano D (2002) Acute hyperglycemia induces nitrotyrosine formation and apoptosis in perfused heart from rat. Diabetes 51(4):1076–1082

    Article  PubMed  CAS  Google Scholar 

  • Chou E, Suzuma I, Way KJ, Opland D, Clermont AC, Naruse K, Suzuma K, Bowling NL, Vlahos CJ, Aiello LP, King GL (2002) Decreased cardiac expression of vascular endothelial growth factor and its receptors in insulin-resistant and diabetic States: a possible explanation for impaired collateral formation in cardiac tissue. Circulation 105(3):373–379

    Article  PubMed  CAS  Google Scholar 

  • Cooke JP, Losordo DW (2002) Nitric oxide and angiogenesis. Circulation 105(18):2133–2135

    Article  PubMed  Google Scholar 

  • Cooper ME, Vranes D, Youssef S, Stacker SA, Cox AJ, Rizkalla B, Casley DJ, Bach LA, Kelly DJ, Gilbert RE (1999) Increased renal expression of vascular endothelial growth factor (VEGF) and its receptor VEGFR-2 in experimental diabetes. Diabetes 48(11):2229–2239

    Article  PubMed  CAS  Google Scholar 

  • Cosentino F, Hishikawa K, Katusic ZS, Luscher TF (1997) High glucose increases nitric oxide synthase expression and superoxide anion generation in human aortic endothelial cells. Circulation 96(1):25–28

    PubMed  CAS  Google Scholar 

  • Dawn B, Bolli R (2002) Role of nitric oxide in myocardial preconditioning. Ann N Y Acad Sci 962:18–41

    Article  PubMed  CAS  Google Scholar 

  • Dulak J, Jozkowicz A, Dembinska-Kiec A, Guevara I, Zdzienicka A, Zmudzinska-Grochot D, Florek I, Wojtowicz A, Szuba A, Cooke JP (2000) Nitric oxide induces the synthesis of vascular endothelial growth factor by rat vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 20(3):659–666

    PubMed  CAS  Google Scholar 

  • El-Omar MM, Lord R, Draper NJ, Shah AM (2003) Role of nitric oxide in posthypoxic contractile dysfunction of diabetic cardiomyopathy. Eur J Heart Fail 5(3):229–239

    Article  PubMed  CAS  Google Scholar 

  • Fam NP, Verma S, Kutryk M, Stewart DJ (2003) Clinician guide to angiogenesis. Circulation 108(21):2613–2618

    Article  PubMed  Google Scholar 

  • Felaco M, Grilli A, De Lutiis MA, Patruno A, Libertini N, Taccardi AA, Di Napoli P, Di Giulio C, Barbacane R, Conti P (2001) Endothelial nitric oxide synthase (eNOS) expression and localization in healthy and diabetic rat hearts. Ann Clin Lab Sci 31(2):179–186

    PubMed  CAS  Google Scholar 

  • Ferrara N, Henzel WJ (1989) Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochem Biophys Res Commun 161(2):851–858

    Article  PubMed  CAS  Google Scholar 

  • Feuvray D, Lopaschuk GD (1997) Controversies on the sensitivity of the diabetic heart to ischemic injury: the sensitivity of the diabetic heart to ischemic injury is decreased. Cardiovasc Res 34(1):113–120

    Article  PubMed  CAS  Google Scholar 

  • Fiordaliso F, Li B, Latini R, Sonnenblick EH, Anversa P, Leri A, Kajstura J (2000) Myocyte death in streptozotocin-induced diabetes in rats in angiotensin II- dependent. Lab Invest 80(4):513–527

    PubMed  CAS  Google Scholar 

  • Fujio Y, Nguyen T, Wencker D, Kitsis RN, Walsh K (2000) Akt promotes survival of cardiomyocytes in vitro and protects against ischemia-reperfusion injury in mouse heart. Circulation 101(6):660–667

    PubMed  CAS  Google Scholar 

  • Gross ML, Heiss N, Weckbach M, Hansen A, El-Shakmak A, Szabo A, Munter K, Ritz E, Amann K (2004) ACE-inhibition is superior to endothelin A receptor blockade in preventing abnormal capillary supply and fibrosis of the heart in experimental diabetes. Diabetologia 47(2):316–324

    Article  PubMed  CAS  Google Scholar 

  • Hemmings DG (2006) Signal transduction underlying the vascular effects of sphingosine 1-phosphate and sphingosylphosphorylcholine. Naunyn Schmiedebergs Arch Pharmacol 373(1):18–29

    Article  PubMed  CAS  Google Scholar 

  • Ho FM, Liu SH, Liau CS, Huang PJ, Lin-Shiau SY (2000) High glucose-induced apoptosis in human endothelial cells is mediated by sequential activations of c-Jun NH(2)-terminal kinase and caspase-3. Circulation 101(22):2618–2624

    PubMed  CAS  Google Scholar 

  • Ito WD, Arras M, Scholz D, Winkler B, Htun P, Schaper W (1997) Angiogenesis but not collateral growth is associated with ischemia after femoral artery occlusion. Am J Physiol 273(3 Pt 2):H1255–H1265

    PubMed  CAS  Google Scholar 

  • Kajstura J, Cheng W, Reiss K, Clark WA, Sonnenblick EH, Krajewski S, Reed JC, Olivetti G, Anversa P (1996) Apoptotic and necrotic myocyte cell deaths are independent contributing variables of infarct size in rats. Lab Invest 74(1):86–107

    PubMed  CAS  Google Scholar 

  • Linke A, Zhao G, Recchia FA, Williams J, Xu X, Hintze TH (2003) Shift in metabolic substrate uptake by the heart during development of alloxan-induced diabetes. Am J Physiol Heart Circ Physiol 285(3):H1007–H1014

    PubMed  CAS  Google Scholar 

  • Luo Z, Diaco M, Murohara T, Ferrara N, Isner JM, Symes JF (1997) Vascular endothelial growth factor attenuates myocardial ischemia-reperfusion injury. Ann Thorac Surg 64(4):993–998

    Article  PubMed  CAS  Google Scholar 

  • Martin A, Komada MR, Sane DC (2003) Abnormal angiogenesis in diabetes mellitus. Med Res Rev 23(2):117–145

    Article  PubMed  CAS  Google Scholar 

  • Maulik N, Fukuda S, Sasaki H (2002) A survival model for the study of myocardial angiogenesis. Methods Enzymol 352:391–407

    Article  PubMed  CAS  Google Scholar 

  • Miao W, Luo Z, Kitsis RN, Walsh K (2000) Intracoronary, adenovirus-mediated Akt gene transfer in heart limits infarct size following ischemia-reperfusion injury in vivo. J Mol Cell Cardiol 32(12):2397–2402

    Article  PubMed  CAS  Google Scholar 

  • Montanari D, Yin H, Dobrzynski E, Agata J, Yoshida H, Chao J, Chao L (2005) Kallikrein gene delivery improves serum glucose and lipid profiles and cardiac function in streptozotocin-induced diabetic rats. Diabetes 54(5):1573–1580

    Article  PubMed  CAS  Google Scholar 

  • Nathan C, Xie QW (1994) Nitric oxide synthases: roles, tolls, and controls. Cell 78(6):915–918

    Article  PubMed  CAS  Google Scholar 

  • Ooie T, Takahashi N, Nawata T, Arikawa M, Yamanaka K, Kajimoto M, Shinohara T, Shigematsu S, Hara M, Yoshimatsu H, Saikawa T (2003) Ischemia-induced translocation of protein kinase C-epsilon mediates cardioprotection in the streptozotocin-induced diabetic rat. Circ J 67(11):955–961

    Article  PubMed  CAS  Google Scholar 

  • Paulson DJ (1997) The diabetic heart is more sensitive to ischemic injury. Cardiovasc Res 34(1):104–112

    Article  PubMed  CAS  Google Scholar 

  • Pieper GM (1998) Review of alterations in endothelial nitric oxide production in diabetes: protective role of arginine on endothelial dysfunction. Hypertension 31(5):1047–1060

    PubMed  CAS  Google Scholar 

  • Pollock JS, Forstermann U, Mitchell JA, Warner TD, Schmidt HH, Nakane M, Murad F (1991) Purification and characterization of particulate endothelium-derived relaxing factor synthase from cultured and native bovine aortic endothelial cells. Proc Natl Acad Sci U S A 88(23):10480–10484

    Article  PubMed  CAS  Google Scholar 

  • Pore N, Liu S, Shu HK, Li B, Haas-Kogan D, Stokoe D, Milanini-Mongiat J, Pages G, O’Rourke DM, Bernhard E, Maity A (2004) Sp1 is involved in Akt-mediated induction of VEGF expression through an HIF-1-independent mechanism. Mol Biol Cell 15(11):4841–4853

    Article  PubMed  CAS  Google Scholar 

  • Ramanathan KB, Wilson JL, Ingram LA, Mirvis DM (1995) Effects of immature recruitable collaterals on myocardial blood flow and infarct size after acute coronary occlusion. J Lab Clin Med 125(1):66–71

    PubMed  CAS  Google Scholar 

  • Ramasamy R, Schaefer S (1999) Inhibition of Na+-H+ exchanger protects diabetic and non-diabetic hearts from ischemic injury: insight into altered susceptibility of diabetic hearts to ischemic injury. J Mol Cell Cardiol 31(4):785–797

    Article  PubMed  CAS  Google Scholar 

  • Ravingerova T, Neckar J, Kolar F (2003) Ischemic tolerance of rat hearts in acute and chronic phases of experimental diabetes. Mol Cell Biochem 249(1–2):167–174

    Article  PubMed  CAS  Google Scholar 

  • Rossig L, Fichtlscherer B, Breitschopf K, Haendeler J, Zeiher AM, Mulsch A, Dimmeler S (1999) Nitric oxide inhibits caspase-3 by S-nitrosation in vivo. J Biol Chem 274(11):6823–6826

    Article  PubMed  CAS  Google Scholar 

  • Sasayama S, Fujita M (1992) Recent insights into coronary collateral circulation. Circulation 85(3):1197–1204

    PubMed  CAS  Google Scholar 

  • Shiraishi I, Melendez J, Ahn Y, Skavdahl M, Murphy E, Welch S, Schaefer E, Walsh K, Rosenzweig A, Torella D, Nurzynska D, Kajstura J, Leri A, Anversa P, Sussman MA (2004) Nuclear targeting of Akt enhances kinase activity and survival of cardiomyocytes. Circ Res 94(7):884–891

    Article  PubMed  CAS  Google Scholar 

  • Singal PK, Bello-Klein A, Farahmand F, Sandhawalia V (2001) Oxidative stress and functional deficit in diabetic cardiomyopathy. Adv Exp Med Biol 498:213–220

    PubMed  CAS  Google Scholar 

  • Six I, Kureishi Y, Luo Z, Walsh K (2002) Akt signaling mediates VEGF/VPF vascular permeability in vivo. FEBS Lett 532(1–2):67–69

    Article  PubMed  CAS  Google Scholar 

  • Skinner HD, Zheng JZ, Fang J, Agani F, Jiang BH (2004) Vascular endothelial growth factor transcriptional activation is mediated by hypoxia-inducible factor 1alpha, HDM2, and p70S6K1 in response to phosphatidylinositol 3-kinase/AKT signaling. J Biol Chem 279(44):45643–45651

    Article  PubMed  CAS  Google Scholar 

  • Sobrevia L, Nadal A, Yudilevich DL, Mann GE (1996) Activation of L-arginine transport (system y+) and nitric oxide synthase by elevated glucose and insulin in human endothelial cells. J Physiol 490(Pt 3):775–781

    PubMed  CAS  Google Scholar 

  • Sridulyakul P, Chakraphan D, Bhattarakosol P, Patumraj S (2003) Endothelial nitric oxide synthase expression in systemic and pulmonary circulation of streptozotocin induced diabetic rats: comparison using image analysis. Clin Hemorheol Microcirc 29(3–4):423–428

    PubMed  CAS  Google Scholar 

  • Stockklauser-Farber K, Ballhausen T, Laufer A, Rosen P (2000) Influence of diabetes on cardiac nitric oxide synthase expression and activity. Biochim Biophys Acta 1535(1):10–20

    PubMed  CAS  Google Scholar 

  • Sugimoto H, Shikata K, Matsuda M, Kushiro M, Hayashi Y, Hiragushi K, Wada J, Makino H (1998) Increased expression of endothelial cell nitric oxide synthase (ecNOS) in afferent and glomerular endothelial cells is involved in glomerular hyperfiltration of diabetic nephropathy. Diabetologia 41(12):1426–1434

    Article  PubMed  CAS  Google Scholar 

  • Tamarat R, Silvestre JS, Kubis N, Benessiano J, Duriez M, deGasparo M, Henrion D, Levy BI (2002) Endothelial nitric oxide synthase lies downstream from angiotensin II-induced angiogenesis in ischemic hindlimb. Hypertension 39(3):830–835

    Article  PubMed  CAS  Google Scholar 

  • Tsang A, Hausenloy DJ, Mocanu MM, Carr RD, Yellon DM (2005) Preconditioning the diabetic heart: the importance of akt phosphorylation. Diabetes 54(8):2360–2364

    Article  PubMed  CAS  Google Scholar 

  • Ungvari Z, Gupte SA, Recchia FA, Batkai S, Pacher P (2005) Role of oxidative-nitrosative stress and downstream pathways in various forms of cardiomyopathy and heart failure. Curr Vasc Pharmacol 3(3):221–229

    Article  PubMed  CAS  Google Scholar 

  • Wohaieb SA, Godin DV (1987) Alterations in free radical tissue-defense mechanisms in streptozocin-induced diabetes in rat. Effects of insulin treatment. Diabetes 36(9):1014–1018

    Article  PubMed  CAS  Google Scholar 

  • Xu G, Takashi E, Kudo M, Ishiwata T, Naito Z (2004) Contradictory effects of short- and long-term hyperglycemias on ischemic injury of myocardium via intracellular signaling pathway. Exp Mol Pathol 76(1):57–65

    Article  PubMed  CAS  Google Scholar 

  • Yamada K, Matsui K, Ogawa S, Yamamoto S, Mori M, Kitano M, Ohashi N (2005) Reduction of myocardial infarct size by SM-198110, a novel Na+/H+ exchange inhibitor, in rabbits. Naunyn Schmiedebergs Arch Pharmacol 371(5):408–419

    Article  PubMed  CAS  Google Scholar 

  • Yoon YS, Uchida S, Masuo O, Cejna M, Park JS, Gwon HC, Kirchmair R, Bahlman F, Walter D, Curry C, Hanley A, Isner JM, Losordo DW (2005) Progressive attenuation of myocardial vascular endothelial growth factor expression is a seminal event in diabetic cardiomyopathy: restoration of microvascular homeostasis and recovery of cardiac function in diabetic cardiomyopathy after replenishment of local vascular endothelial growth factor. Circulation 111(16):2073–2085

    Article  PubMed  CAS  Google Scholar 

  • Ziegelhoffer A, Ravingerova T, Waczulikova I, Carsky J, Neckar J, Ziegelhoffer–Mihalovicova B, Styk J (2002) Energy transfer in acute diabetic rat hearts: adaptation to increased energy demands due to augmented calcium transients. Ann N Y Acad Sci 967:463–468

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors appreciate the contributions of Dr. Nai-tse Tsai. This work was supported by NIH grants HL70215 (RWC) and EY04618 (RBC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. William Caldwell.

Additional information

Dr. Ma was on leave from the Sports Hospital, Sports Technical Institute of Guangdong, Guangzhou, China 510100. Dr. Al-Shabrawey is on leave from the Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura, Egypt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, G., Al-Shabrawey, M., Johnson, J.A. et al. Protection against myocardial ischemia/reperfusion injury by short-term diabetes: enhancement of VEGF formation, capillary density, and activation of cell survival signaling. Naunyn-Schmied Arch Pharmacol 373, 415–427 (2006). https://doi.org/10.1007/s00210-006-0102-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-006-0102-1

Keywords

Navigation