Skip to main content
Log in

The Hydrodynamical Relevance of the Camassa–Holm and Degasperis–Procesi Equations

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

In recent years two nonlinear dispersive partial differential equations have attracted much attention due to their integrable structure. We prove that both equations arise in the modeling of the propagation of shallow water waves over a flat bed. The equations capture stronger nonlinear effects than the classical nonlinear dispersive Benjamin–Bona–Mahoney and Korteweg–de Vries equations. In particular, they accommodate wave breaking phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alinhac, S., Gérard, P.: Opérateurs Pseudo-différentiels et Théorème de Nash-Moser. Savoirs Actuels. InterEditions, Paris; Editions du Centre National de la Recherche Scientifique (CNRS), Meudon, 190 pp., 1991

  2. Angulo J., Bona J.L., Linares F., Scialom M.: Scaling, stability and singularities for nonlinear, dispersive wave equations: the critical case. Nonlinearity 15, 759–786 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Alvarez-Samaniego B., Lannes D.: Large time existence for 3D water-waves and asymptotics. Invent. Math. 171, 485–541 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Alvarez-Samaniego B., Lannes D.: A Nash–Moser theorem for singular evolution equations. Application to the Serre and Green–Naghdi equations. Indiana Univ. Math. J. 57, 97–131 (2008)

    MATH  Google Scholar 

  5. Benjamin T.B., Bona J.L., Mahoney J.J.: Model equations for long waves in nonlinear dispersive systems. Philos. Trans. R. Soc. Lond. A 227, 47–78 (1972)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Bressan A., Constantin A.: Global conservative solutions of the Camassa–Holm equation. Arch. Rat. Mech. Anal. 183, 215–239 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Camassa R., Holm D.: An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71, 1661–1664 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Constantin A.: On the scattering problem for the Camassa–Holm equation. Proc. R. Soc. Lond. A 457, 953–970 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Constantin A., Escher J.: Wave breaking for nonlinear nonlocal shallow water equations. Acta Math. 181, 229–243 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Constantin A., Gerdjikov V.S., Ivanov R.I.: Inverse scattering transform for the Camassa–Holm equation. Inverse Probl. 22, 2197–2207 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Constantin A., Strauss W.: Stability of the Camassa–Holm solitons. J. Nonlinear Sci 12, 415–422 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Craik A.D.D.: The origins of water wave theory. Ann. Rev. Fluid Mech. 36, 1–28 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Degasperis A., Holm D., Hone A.: A new integrable equation with peakon solutions. Theor. Math. Phys. 133, 1461–1472 (2002)

    MathSciNet  Google Scholar 

  14. Degasperis A., Procesi M. Asymptotic integrability. Symmetry and Perturbation Theory (Eds. Degasperis A. and Gaeta G.) World Scientific, Singapore, 23–37, 1999

  15. Drazin P.G., Johnson R.S.: Solitons: An Introduction. Cambridge University Press, Cambridge (1992)

    MATH  Google Scholar 

  16. Escher J., Liu Y., Yin Z.: Global weak solutions and blow-up structure for the Degasperis–Procesi equation. J. Funct. Anal. 241, 457–485 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Fokas A.S., Fuchssteiner B.: Symplectic structures, their Bäcklund transformation and hereditary symmetries. Physica D 4, 821–831 (1981)

    MATH  Google Scholar 

  18. Fornberg B., Whitham G.B.: A numerical and theoretical study of certain nonlinear wave phenomena. Philos. Trans. R. Soc. Lond. A 289, 373–404 (1978)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Green A.E., Naghdi P.M.: A derivation of equations for wave propagation in water of variable depth. J. Fluid Mech. 78, 237–246 (1976)

    Article  ADS  MATH  Google Scholar 

  20. Ivanov R.I.: On the integrability of a class of nonlinear dispersive wave equations. J. Nonlinear Math. Phys. 12, 462–468 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Johnson R.S.: A Modern Introduction to the Mathematical Theory of Water Waves. Cambridge University Press, Cambridge (1997)

    Book  MATH  Google Scholar 

  22. Johnson R.S.: Camassa–Holm, Korteweg-de Vries and related models for water waves. J. Fluid Mech. 457, 63–82 (2002)

    ADS  MathSciNet  MATH  Google Scholar 

  23. Korteweg D.J., de Vries G.: On the change of form of long waves advancing in a rectangular canal and on a new type of long stationary waves. Philos. Mag. 39, 422 (1895)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lenells J.: Conservation laws of the Camassa–Holm equation. J. Phys. A 38, 869–880 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Li Y.A.: A shallow-water approximation to the full water wave problem. Commun. Pure Appl. Math. 59, 1225–1285 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Matsuno Y.: The N-soliton solution of the Degasperis–Procesi equation. Inverse Probl. 21, 2085–2101 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. McKean H.P.: Breakdown of the Camassa–Holm equation. Commun. Pure Appl. Math. 57, 416–418 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  28. Molinet L.: On well-posedness results for the Camassa–Holm equation on the line: a survey. J. Nonlinear Math. Phys. 11, 521–533 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Peregrine D.H.: Calculations of the development of an undular bore. J. Fluid Mech. 25, 321–330 (1966)

    Article  ADS  Google Scholar 

  30. Souganidis P.E., Strauss W.A.: Instability of a class of dispersive solitary waves. Proc. R. Soc. Edinburgh Sect. A 114, 195–212 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  31. Stoker J.J.: Water Waves. Interscience Publ., New York (1957)

    MATH  Google Scholar 

  32. Tao T. Low-regularity global solutions to nonlinear dispersive equations. Surveys in Analysis and Operator Theory, Proc. Centre Math. Appl. Austral. Nat. Univ., 19–48, 2002

  33. Whitham G.B. Linear and Nonlinear Waves. Wiley, New York

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian Constantin.

Additional information

Communicated by L. Ambrosio

Rights and permissions

Reprints and permissions

About this article

Cite this article

Constantin, A., Lannes, D. The Hydrodynamical Relevance of the Camassa–Holm and Degasperis–Procesi Equations. Arch Rational Mech Anal 192, 165–186 (2009). https://doi.org/10.1007/s00205-008-0128-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-008-0128-2

Keywords

Navigation