Skip to main content
Log in

Construction of a FRAX® model for the assessment of fracture probability in Canada and implications for treatment

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

We describe the creation of a FRAX® model for the assessment of fracture probability in Canadian men and women, calibrated from national hip fracture and mortality data. This FRAX tool was used to examine possible thresholds for therapeutic intervention in Canada in two large complementary cohorts of women and men.

Objective

To evaluate a Canadian World Health Organization (WHO) fracture risk assessment (FRAX®) tool for computing 10-year probabilities of osteoporotic fracture.

Methods

Fracture probabilities were computed from national hip fracture data (2005) and death hazards (2004) for Canada. Probabilities took account of age, sex, clinical risk factors (CRFs), and femoral neck bone mineral density (BMD). Treatment implications were studied in two large cohorts of individuals age 50 years and older: the population-based Canadian Multicentre Osteoporosis Study (4,778 women and 1,919 men) and the clinically referred Manitoba BMD Cohort (36,730 women and 2,873 men).

Results

Fracture probabilities increased with age, decreasing femoral neck T-score, and number of CRFs. Among women, 10.1–11.3% would be designated high risk based upon 10-year major osteoporotic fracture probability exceeding 20%. A much larger proportion would be designated high risk based upon 10-year hip fracture probability exceeding 3% (25.7–28.0%) or osteoporotic BMD (27.1–30.9%), and relatively few from prior hip or clinical spine fracture (1.6–4.2%). One or more criteria for intervention were met by 29.2–34.0% of women excluding hip fracture probability (35.3–41.0% including hip fracture probability). Lower intervention rates were seen among CaMos (Canadian Multicentre Osteoporosis Study) men (6.8–12.9%), but in clinically referred men from the Manitoba BMD Cohort, one or more criteria for high risk were seen for 26.4% excluding hip fracture probability (42.4% including hip fracture probability).

Conclusions

The FRAX tool can be used to identify intervention thresholds in Canada. The FRAX model supports a shift from a dual X-ray absorptiometry (DXA)-based intervention strategy, towards a strategy based on fracture probability for a major osteoporotic fracture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Tenenhouse A, Joseph L, Kreiger N et al (2000) Estimation of the prevalence of low bone density in Canadian women and men using a population-specific DXA reference standard: the Canadian Multicentre Osteoporosis Study (CaMos). Osteoporos Int 11:897–904

    Article  CAS  PubMed  Google Scholar 

  2. Leslie WD, O’Donnell S, Lagace C et al (2009) Population-based Canadian hip fracture rates with international comparisons. Osteoporos Int 21:1317–1322

    Article  PubMed  Google Scholar 

  3. Wiktorowicz ME, Goeree R, Papaioannou A et al (2001) Economic implications of hip fracture: health service use, institutional care and cost in Canada. Osteoporos Int 12:271–278

    Article  CAS  PubMed  Google Scholar 

  4. Papaioannou A, Adachi JD, Parkinson W et al (2001) Lengthy hospitalization associated with vertebral fractures despite control for comorbid conditions. Osteoporos Int 12:870–874

    Article  CAS  PubMed  Google Scholar 

  5. Center JR, Nguyen TV, Schneider D et al (1999) Mortality after all major types of osteoporotic fracture in men and women: an observational study. Lancet 353:878–882

    Article  CAS  PubMed  Google Scholar 

  6. Johnell O, Kanis JA, Oden A et al (2004) Mortality after osteoporotic fractures. Osteoporos Int 15:38–42

    Article  CAS  PubMed  Google Scholar 

  7. Ioannidis G, Papaioannou A, Hopman WM et al (2009) Relation between fractures and mortality: results from the Canadian Multicentre Osteoporosis Study. CMAJ 181:265–271

    PubMed  Google Scholar 

  8. Kanis JA, Oden A, Johnell O et al (2003) The components of excess mortality after hip fracture. Bone 32:468–473

    Article  CAS  PubMed  Google Scholar 

  9. Kanis JA, Oden A, Johnell O et al (2004) Excess mortality after hospitalisation for vertebral fracture. Osteoporos Int 15:108–112

    Article  PubMed  Google Scholar 

  10. Adachi JD, Ioannidis G, Berger C et al (2001) The influence of osteoporotic fractures on health-related quality of life in community-dwelling men and women across Canada. Osteoporos Int 12:903–908

    Article  CAS  PubMed  Google Scholar 

  11. Hallberg I, Rosenqvist AM, Kartous L et al (2004) Health-related quality of life after osteoporotic fractures. Osteoporos Int 15:834–841

    Article  CAS  PubMed  Google Scholar 

  12. Kanis JA, Melton LJ III, Christiansen C et al (1994) The diagnosis of osteoporosis. J Bone Miner Res 9:1137–1141

    Article  CAS  PubMed  Google Scholar 

  13. Looker AC, Wahner HW, Dunn WL et al (1998) Updated data on proximal femur bone mineral levels of US adults. Osteoporos Int 8:468–489

    Article  CAS  PubMed  Google Scholar 

  14. Kanis JA, McCloskey EV, Johansson H et al (2008) A reference standard for the description of osteoporosis. Bone 42:467–475

    Article  CAS  PubMed  Google Scholar 

  15. Cranney A, Jamal SA, Tsang JF et al (2007) Low bone mineral density and fracture burden in postmenopausal women. CMAJ 177:575–580

    PubMed  Google Scholar 

  16. Kanis JA, Oden A, Johnell O et al (2007) The use of clinical risk factors enhances the performance of BMD in the prediction of hip and osteoporotic fractures in men and women. Osteoporos Int 18:1033–1046

    Article  CAS  PubMed  Google Scholar 

  17. Kanis JA, Oden A, Johansson H et al (2009) FRAX and its applications to clinical practice. Bone 44:734–743

    Article  PubMed  Google Scholar 

  18. Kanis JA, Johnell O, De Laet C et al (2002) International variations in hip fracture probabilities: implications for risk assessment. J Bone Miner Res 17:1237–1244

    Article  PubMed  Google Scholar 

  19. Kanis JA, Johnell O, Oden A et al (2008) FRAX and the assessment of fracture probability in men and women from the UK. Osteoporos Int 19:385–397

    Article  CAS  PubMed  Google Scholar 

  20. Dawson-Hughes B, Tosteson AN, Melton LJ III et al (2008) Implications of absolute fracture risk assessment for osteoporosis practice guidelines in the USA. Osteoporos Int 19:449–458

    Article  CAS  PubMed  Google Scholar 

  21. Fujiwara S, Nakamura T, Orimo H et al (2008) Development and application of a Japanese model of the WHO fracture risk assessment tool (FRAX). Osteoporos Int 19:429–435

    Article  CAS  PubMed  Google Scholar 

  22. Lippuner K, Johansson H, Kanis JA et al (2009) Remaining lifetime and absolute 10-year probabilities of osteoporotic fracture in Swiss men and women. Osteoporos Int 20:1131–1140

    Article  CAS  PubMed  Google Scholar 

  23. Siminoski K, Leslie WD, Frame H et al (2005) Recommendations for bone mineral density reporting in Canada. Can Assoc Radiol J 56:178–188

    PubMed  Google Scholar 

  24. Dawson-Hughes B (2008) A revised clinician’s guide to the prevention and treatment of osteoporosis. J Clin Endocrinol Metab 93:2463–2465

    Article  CAS  PubMed  Google Scholar 

  25. Dawson-Hughes B, Looker AC, Tosteson AN et al (2010) The potential impact of new National Osteoporosis Foundation guidance on treatment patterns. Osteoporos Int 21:41–52

    Article  CAS  PubMed  Google Scholar 

  26. Kanis JA, Johansson H, Oden A et al (2010) The effects of a FRAX® revision for the USA. Osteoporos Int 21:35–40

    Article  CAS  PubMed  Google Scholar 

  27. Ettinger B, Black DM, Dawson-Hughes B et al (2010) Updated fracture incidence rates for the US version of FRAX. Osteoporos Int 21:25–33

    Article  CAS  PubMed  Google Scholar 

  28. Richards J, Brown A, Homan C (2001) The data quality study of the Canadian discharge abstract database: a methodological perspective. Proceedings of Statistics Canada Symposium: Achieving data quality in a statistical agency. Statistics Canada, Ottawa Last accessed: June 6, 2009. URL: http://secure.cihi.ca/cihiweb/en/downloads/quality_dadconfpaper_e.pdf

  29. Canadian Institute for Health Information (2008) Quality Assurance Processes Applied to the Discharge Abstract and Hospital Morbidity Databases. CIHI, Ottawa Last accessed: Aug. 3, 2009. URL: http://secure.cihi.ca/cihiweb/en/downloads/quality_assurance_proc_apr08_e.pdf

  30. Kreiger N, Tenenhouse A, Joseph L et al (1999) Research notes: the Canadian Multicentre Osteoporosis Study (CaMos)—background, rationale, methods. Can J Aging 18:376–387

    Article  Google Scholar 

  31. Genant HK (1995) Universal standardization for dual X-ray absorptiometry: patient and phantom cross-calibration results. J Bone Miner Res 10:997–998

    Article  CAS  PubMed  Google Scholar 

  32. Berger C, Langsetmo L, Joseph L et al (2008) Change in bone mineral density as a function of age in women and men and association with the use of antiresorptive agents. Can Med Assoc J 178:1660–1668

    Article  Google Scholar 

  33. Leslie WD, Metge C (2003) Establishing a regional bone density program: lessons from the Manitoba experience. J Clin Densitom 6:275–282

    Article  PubMed  Google Scholar 

  34. Leslie WD, MacWilliam L, Lix L et al (2005) A population-based study of osteoporosis testing and treatment following introduction of a new bone densitometry service. Osteoporos Int 16:773–782

    Article  PubMed  Google Scholar 

  35. Leslie WD, Caetano PA, MacWilliam LR et al (2005) Construction and validation of a population-based bone densitometry database. J Clin Densitom 8:25–30

    Article  PubMed  Google Scholar 

  36. Leslie WD (2006) The importance of spectrum bias on bone density monitoring in clinical practice. Bone 39:361–368

    Article  PubMed  Google Scholar 

  37. Roos NP, Shapiro E (1999) Revisiting the Manitoba Centre for Health Policy and Evaluation and its population-based health information system. Med Care 37:JS10–JS14

    Article  CAS  PubMed  Google Scholar 

  38. Giangregorio L, Leslie WD (2010) Time since prior fracture is a risk modifier for ten year osteoporotic fractures. J Bone Miner Res (in press)

  39. Leslie WD, Lix LM, Johansson H, Oden A, McCloskey E, Kanis JA (2010) Independent clinical validation of a Canadian FRAX® Tool: fracture prediction and model calibration. J Bone Miner Res

  40. Kanis JA (2007) WHO Scientific group on the assessment of osteoporosis at primary health care level. Brussels, Belgium

  41. Johansson H, Kanis JA, Oden A et al (2009) BMD, clinical risk factors and their combination for hip fracture prevention. Osteoporos Int 20:1675–1682

    Article  CAS  PubMed  Google Scholar 

  42. Kanis JA, McCloskey EV, Johansson H et al (2008) Case finding for the management of osteoporosis with FRAX((R))—assessment and intervention thresholds for the UK. Osteoporos Int 19:1395–1408

    Article  CAS  PubMed  Google Scholar 

  43. Leslie WD, Siminoski K, Brown JP (2007) Comparative effects of densitometric and absolute fracture risk classification systems on projected intervention rates in postmenopausal women. J Clin Densitom 10:124–131

    Article  PubMed  Google Scholar 

  44. Richards JB, Leslie WD, Joseph L et al (2007) Changes to osteoporosis prevalence according to method of risk assessment. J Bone Miner Res 22:228–234

    Article  PubMed  Google Scholar 

  45. Lyles KW, Colon-Emeric CS, Magaziner JS et al (2007) Zoledronic acid and clinical fractures and mortality after hip fracture. N Engl J Med 357:1799–1809

    Article  CAS  PubMed  Google Scholar 

  46. Kanis JA, Barton IP, Johnell O (2005) Risedronate decreases fracture risk in patients selected solely on the basis of prior vertebral fracture. Osteoporos Int 16:475–482

    Article  CAS  PubMed  Google Scholar 

  47. Kanis JA, Johansson H, Oden A et al (2009) Bazedoxifene reduces vertebral and clinical fractures in postmenopausal women at high risk assessed with FRAX. Bone 44:1049–1054

    Article  CAS  PubMed  Google Scholar 

  48. McCloskey EV, Johansson H, Oden A et al (2009) Ten-year fracture probability identifies women who will benefit from clodronate therapy—additional results from a double-blind, placebo-controlled randomised study. Osteoporos Int 20:811–817

    Article  CAS  PubMed  Google Scholar 

  49. Tosteson AN, Melton LJ III, Dawson-Hughes B et al (2008) Cost-effective osteoporosis treatment thresholds: the United States perspective. Osteoporos Int 19:437–447

    Article  CAS  PubMed  Google Scholar 

  50. Tosteson AN, Burge RT, Marshall DA et al (2008) Therapies for treatment of osteoporosis in US women: cost-effectiveness and budget impact considerations. Am J Manag Care 14:605–615

    PubMed  Google Scholar 

  51. Donaldson MG, Cawthon PM, Lui LY et al (2009) Estimates of the proportion of older white women who would be recommended for pharmacologic treatment by the new U.S. National Osteoporosis Foundation Guidelines. J Bone Miner Res 24:675–680

    Article  PubMed  Google Scholar 

  52. Fraser LA, Langsetmo L, Berger C et al (2010) Fracture prediction and calibration of a Canadian FRAX® tool: a population-based report from CaMos. Osteoporos Int (in press)

  53. Leslie WD, Lix LM, Johansson H et al (2010) Independent clinical validation of a Canadian FRAX((R)) tool: Fracture prediction and model calibration. J Bone Miner Res [epub ahead of print]

Download references

Acknowledgements

The development of FRAX® was in part supported by a non restricted grant from the International Osteoporosis Foundation and the European Society for Clinical and Economic Aspects of Osteoporosis and Osteoarthritis. The hip fracture and mortality statistics were generously provided by the Public Health Agency of Canada using manipulated Canadian Institutes of Health Information data. We thank all those participants in CaMos whose careful responses and attendance made this analysis possible. The authors are indebted to Manitoba Health for the provision of data (HIPC File No. 2007/2008-49). The results and conclusions are those of the authors, and no official endorsement by Manitoba Health is intended or should be inferred. This article has been reviewed and approved by the members of the Manitoba Bone Density Program Committee. The analyses and conclusions in this report reflect the opinions of individual experts and not their affiliated organizations.

Conflicts of interest

William D. Leslie

Speaker fees and unrestricted research grants from Merck Frosst Canada Ltd; unrestricted research grants from Sanofi-Aventis, Procter & Gamble Pharmaceuticals Canada, Inc., Novartis, Amgen Pharmaceuticals Canada, Inc., Innovus 3M, Genzyme Canada; advisory boards for Genzyme Canada, Novartis, and Amgen Pharmaceuticals Canada, Inc.

Lisa M. Lix

Unrestricted research grants from Amgen Pharmaceuticals Canada, Inc. and innovus 3M.

David Goltzman

Consultant for Eli Lily, Novartis, Merck, Proctor & Gamble, and Amgen.

David A. Hanley

Consultant and grants from Amgen, Eli Lilly, Merck, Novartis, Proctor & Gamble, Warner-Chilcott, Sanofi-Aventis, Servier, Wyeth-Ayerst, Nycomed.

Jonathan D. Adachi

Consultant/Speaker or research grants from: Amgen, Astra Zeneca, Eli Lilly, GSK, Merck, Novartis, Nycomed, Pfizer, Procter & Gamble, Roche, Sanofi Aventis, Servier, Wyeth, Bristol-Myers Squibb.

Eugene McCloskey

Speaker fees and/or unrestricted research grants from Novartis, Amgen, AstraZeneca, Pfizer, Bayer, Procter & Gamble, Lilly, Roche, Servier and Hologic.

John A Kanis

Nothing to declare for FRAX and the context of this paper.

Others: None

Sources of support

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. D. Leslie.

Additional information

CaMos Research Group

David Goltzman (co-principal investigator, McGill University), Nancy Kreiger (co-principal investigator, Toronto), Alan Tenenhouse (principal investigator emeritus, Toronto). CaMos Coordinating Centre, McGill University, Montreal, Quebec: Suzette Poliquin (national coordinator), Suzanne Godmaire (research assistant), Claudie Berger (study statistician). Memorial University, St. John’s Newfoundland: Carol Joyce (director), Christopher Kovacs (co-director), Emma Sheppard (coordinator). Dalhousie University, Halifax, Nova Scotia: Susan Kirkland, Stephanie Kaiser (co-directors), Barbara Stanfield (coordinator). Laval University, Quebec City, Quebec: Jacques P. Brown (director), Louis Bessette (co-director), Marc Gendreau (coordinator). Queen’s University, Kingston, Ontario: Tassos Anastassiades (director), Tanveer Towheed (co-director), Barbara Matthews (coordinator). University of Toronto, Toronto, Ontario: Bob Josse (director), Sophie A Jamal (co-director), Tim Murray (past director), Barbara Gardner-Bray (coordinator). McMaster University, Hamilton, Ontario: Jonathan D. Adachi (director), Alexandra Papaioannou (co-director), Laura Pickard (coordinator). University of Saskatchewan, Saskatoon, Saskatchewan: Wojciech P. Olszynski (director), K. Shawn Davison(co-director), Jola Thingvold (coordinator). University of Calgary, Calgary, Alberta: David A. Hanley (director), Jane Allan (coordinator). University British Columbia, Vancouver, British Columbia: Jerilynn C. Prior (director), Milan Patel (co-director),Yvette Vigna (coordinator); Brian C. Lentle (radiologist).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leslie, W.D., Lix, L.M., Langsetmo, L. et al. Construction of a FRAX® model for the assessment of fracture probability in Canada and implications for treatment. Osteoporos Int 22, 817–827 (2011). https://doi.org/10.1007/s00198-010-1464-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-010-1464-2

Keywords

Navigation