Skip to main content

Advertisement

Log in

Effects of estrogen therapy on bone marrow adipocytes in postmenopausal osteoporotic women

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

One-year treatment of osteoporotic postmenopausal women with transdermal estrogen resulted in significant decreases in bone marrow adipocyte volume and prevented increases in adipocyte number as compared to placebo-treated controls. Estrogen treatment also prevented increases in mean adipocyte size over 1 year.

Introduction

Aging is associated not only with bone loss but also with increases in bone marrow adipocytes. Since osteoblasts and adipocytes are derived from a common precursor, it is possible that with aging, there is a preferential “switch” in commitment of this precursor to the adipocyte over the osteoblast lineage. We tested the hypothesis that the apparent “age-related” increase in marrow adipocytes is due, at least in part, to estrogen (E) deficiency.

Methods

Reanalysis of bone biopsies from a randomized, placebo-controlled trial involving 56 postmenopausal osteoporotic women (mean age, 64 years) treated either with placebo (PL, n = 27) or transdermal estradiol (0.1 mg/d, n = 29) for 1 year.

Results

Adipocyte volume/tissue volume (AV/TV) and adipocyte number (Ad#) increased (by ∼20%, P < 0.05) in the PL group, but were unchanged (Ad#) or decreased (AV/TV, by −24%, P < 0.001) in the E group. E treatment also prevented increases in mean adipocyte size over 1 year.

Conclusions

These findings represent the first in vivo demonstration in humans that not only ongoing bone loss, but also the increase in bone marrow adipocyte number and size in postmenopausal osteoporotic women may be due, at least in part, to E deficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Riggs BL, Khosla S, Melton LJ (2002) Sex steroids and the construction and conservation of the adult skeleton. Endocr Rev 23:279–302

    Article  PubMed  CAS  Google Scholar 

  2. Lips P, Courpron P, Meunier PJ (1978) Mean wall thickness of trabecular bone packets in the human iliac crest: changes with age. Calcif Tissue Res 26:13–17

    Article  PubMed  CAS  Google Scholar 

  3. Dunnill MS, Anderson JA, Whitehead R (1967) Quantitative histological studies on age changes in bone. J Path Bact 94:275–291

    Article  PubMed  CAS  Google Scholar 

  4. Meunier P, Aaron J, Edouard C, Vignon A (1971) Osteoporosis and the replacement of cell populations of the marrow by adipose tissue. Clin Orthop Rel Res 80:147–154

    Article  CAS  Google Scholar 

  5. Aubin JE, Liu F (1996) The osteoblast lineage. In: Bilezikian J, Raisz L, Rodan G (eds) Principles of bone biology. Academic Press, San Diego, CA., pp 51–68

    Google Scholar 

  6. Hicok KC, Thomas T, Gori F, Rickard DJ, Spelsberg TC, Riggs BL (1998) Development and characterization of conditionally immortalized osteoblast precursor cell lines from human bone marrow stroma. J Bone Miner Res 13:205–217

    Article  PubMed  CAS  Google Scholar 

  7. Gori F, Thomas T, Hicok KC, Spelsberg TC, Riggs BL (1999) Differentiation of human marrow stromal precursor cells: bone morphogenetic protein-2 increases OSF2/CBFA1, enhances osteoblast commitment, and inhibits late adipocyte maturation. J Bone Miner Res 14:1522–1535

    Article  PubMed  CAS  Google Scholar 

  8. Ducy P, Starbuck M, Priemel M, Shen J, Pinero G, Geoffroy V, Amling M, Karsenty G (1999) A Cbfa1-dependent genetic pathway controls bone formation beyond embryonic development. Genes Dev 13:1025–1036

    Article  PubMed  CAS  Google Scholar 

  9. Nakashima K, Zhou X, Kunkel G, Zhang Z, Deng JM, Behringer RR, Crombrugghe BD (2002) The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell 108:17–29

    Article  PubMed  CAS  Google Scholar 

  10. Lazar MA (2005) PPAR gamma, 10 years later. Biochimie 87:9–13

    Article  PubMed  CAS  Google Scholar 

  11. Akune T, Ohba S, Kamekura S, Yamaguchi M, Chung Ui, Kubota N, Terauchi Y, Harada Y, Azuma Y, Nakamura K, Kadowaki T, Kawaguchi H (2004) PPARgamma insufficiency enhances osteogenesis through osteoblast formation from bone marrow progenitors. J Clin Invest 113:846–855

    PubMed  CAS  Google Scholar 

  12. Jilka RL, Weinstein RS, Takahashi K, Parfitt AM, Manolagas SC (1996) Linkage of decreased bone mass with impaired osteoblastogenesis in a murine model of accelerated senescence. J Clin Invest 97:1732–1740

    Article  PubMed  CAS  Google Scholar 

  13. Beresford JN, Bennett JH, Devlin C, Leboy PS, Owen ME (1992) Evidence for an inverse relationship between the differentiation of adipocytic and osteogenic cells in rat marrow stromal cell cultures. J Cell Sci 102:341–351

    PubMed  CAS  Google Scholar 

  14. Rzonca SO, Suva LJ, Gaddy D, Montague DC, Lecka-Czernik B (2004) Bone is a target for the antidiabetic compound rosiglitazone. Endocrinology 145:401–406

    Article  PubMed  CAS  Google Scholar 

  15. Nuttall ME, Gimble JM (2000) Is there a therapeutic opportunity to either prevent or treat osteopenic disorders by inhibiting marrow adipogenesis? Bone 27:177–184

    Article  PubMed  CAS  Google Scholar 

  16. Cooke PS, Naaz A (2004) Role of estrogens in adipocyte development and function. Exp Biol Med 229:1127–1135

    CAS  Google Scholar 

  17. Benayahu D, Shur I, Ben-Eliyahu S (2000) Hormonal changes affect the bone and bone marrow cells in a rat model. J Cell Biochem 79:407–415

    Article  PubMed  CAS  Google Scholar 

  18. Okazaki R, Inoue D, Shibata M, Saika M, Kido S, Ooka H, Tomiyama H, Sakamoto Y, Matsumoto T (2002) Estrogen promotes early osteoblast differentiation and inhibits adipocyte differentiation in mouse bone marrow stromal cell lines that express estrogen receptor (ER) alpha or beta. Endocrinology 143:2349–2356

    Article  PubMed  CAS  Google Scholar 

  19. Dang ZC, Van Bezooijen RL, Karperien M, Papapoulos SE, Lowik CWGM (2002) Exposure of KS483 cells to estrogen enhances osteogenesis and inhibits adipogenesis. J Bone Miner Res 17:394–405

    Article  PubMed  CAS  Google Scholar 

  20. Lufkin EG, Wahner HW, O’Fallon WM, Hodgson SF, Kotowicz MA, Lane AW, Judd HL, Caplan RH, Riggs BL (1992) Treatment of postmenopausal osteoporosis with transdermal estrogen. Ann Intern Med 117:1–9

    PubMed  CAS  Google Scholar 

  21. Justesen J, Stenderup K, Ebbesen EN, Mosekilde L, Steiniche T, Kassem M (2001) Adipocyte tissue volume in bone marrow is increased with aging and in patients with osteoporosis. Biogerontology 2:165–171

    Article  PubMed  CAS  Google Scholar 

  22. Verma S, Rajaratnam JH, Denton J, Hoyland JA, Byers RJ (2002) Adipocytic proportion of bone marrow is inversely related to bone formation in osteoporosis. J Clin Pathol 55:693–698

    Article  PubMed  CAS  Google Scholar 

  23. Hamosh M, Hamosh P (1975) The effect of estrogen on the lipoprotein lipase activity of rat adipose tissue. J Clin Invest 55:1132–1135

    Article  PubMed  CAS  Google Scholar 

  24. Palin SL, McTernan PG, Anderson LA, Sturdee DW, Barnett AH, Kumar S (2003) 17beta-Estradiol and anti-estrogen ICI compound 182,780 regulate expression of lipoprotein lipase and hormone-sensitive lipase in isolated subcutaneous abdominal adipocytes. Metabolism 52:383–388

    Article  PubMed  CAS  Google Scholar 

  25. Pedersen SB, Kristensen K, Hermann PA, Katzenellenbogen JA, Richelsen B (2004) Estrogen controls by lipolysis by up-regulating alpha2A-adrenergic receptors directly in human adipose tissue through the estrogen receptor alpha. Implications for the female fat distribution. J Clin Endocrinol Metab 89:1869–1878

    Article  PubMed  CAS  Google Scholar 

  26. Lindberg MK, Alatalo SL, Hallelen JM, Mohan S, Gustafsson JA, Ohlsson C (2001) Estrogen receptor specificity in the regulation of the skeleton in female mice. J Endocrinol 171:229–236

    Article  PubMed  CAS  Google Scholar 

  27. Misso ML, Murata Y, Boon WC, Jones MEE, Britt KL, Simpson ER (2003) Cellular and molecular characterization of the adipose phenotype of the aromatase-deficient mouse. Endocrinology 144:1474–1480

    Article  PubMed  CAS  Google Scholar 

  28. Heine PA, Taylor JA, Iwamoto GA, Lubahn DB, Cooke PS (2000) Increased adipose tissue in male and female estrogen receptor-alpha knockout mice. Proc Natl Acad Sci USA 97:12729–12734

    Article  PubMed  CAS  Google Scholar 

  29. Brann DW, De Sevilla L, Zamorano PL, Mahesh VB (1999) Regulation of leptin gene expression and secretion by steroid hormones. Steroids 64:659–663

    Article  PubMed  CAS  Google Scholar 

  30. Machinal-Quelin F, Dieudonne MN, Pecquery R, Leneveu MC, Giudicelli Y (2002) Direct in vitro effects of androgens and estrogens on ob gene expression and leptin secretion in human adipose tissue. Endocrine 18:179–184

    Article  PubMed  CAS  Google Scholar 

  31. Ducy P, Amling M, Takeda S, Priemel M, Schilling AF, Beil FT, Shen J, Vinson C, Rueger JM, Karsenty G (2000) Leptin inhibits bone formation through a hypothalmicrelay: a central control of bone mass. Cell 100:197–207

    Article  PubMed  CAS  Google Scholar 

  32. Takeda S, Elefteriou F, Levasseur R, Liu X, Zhao L, Parker KL, Armstrong D, Ducy P, Karsenty G (2002) Leptin regulates bone formation via the sympathetic nervous system. Cell 111:305–317

    Article  PubMed  CAS  Google Scholar 

  33. Thomas T, Gori F, Khosla S, Jensen MD, Burguera B, Riggs BL (1999) Leptin acts on human marrow stromal cells to enhance differentiation to osteoblasts and to inhibit differentiation to adipocytes. Endocrinology 140:1630–1638

    Article  PubMed  CAS  Google Scholar 

  34. Gimble JM, Zvonic S, Floyd ZE, Kassem M, Nuttall ME (2006) Playing with bone and fat. J Cell Biochem 98:251–266

    Article  PubMed  CAS  Google Scholar 

  35. Duque G, Rivas D (2007) Alendronate has an anabolic effect on bone through the differentiation of mesenchymal stem cells. J Bone Miner Res 22:1603–1611

    Article  PubMed  CAS  Google Scholar 

  36. Rickard DJ, F-LW, Rodriguez-Rojas AM, Wu Z, Trice WJ, Hoffman SJ, Votta BJ, Stroup GB, Kumar S, Nuttall ME (2006) Intermittent treatment with parathyroid hormone (PTH) as well as a non-peptide small molecule against of the PTH1 receptor inhibits adipocyte differentiation in human bone marrow stromal cells. Bone 39:1361–1372

    Article  PubMed  CAS  Google Scholar 

  37. Kulkarni N, Wei T, Kumar A, Dow ER, Stewart TR, Shou J, N’cho M, Sterchi DL, Gitter BD, Higgs RE, Halladay DL, Engler TA, Martin TJ, Bryant HU, Ma YL, Onyia JE (in press DOI 10.1002/jcb.21374) Changes in osteoblast, chondrocyte, and adipocytes lineages mediate the bone anabolic actions of PTH and small molecule GSK-3 inhibitor. J Cell Biochem

  38. Sun L, Peng Y, Sharrow AC, Iqbal J, Zhang Z, Papachristou DJ, Zaidi S, Zhu LL, Yaroslavskiy BB, Zhou H, Zallone AZ, Sairam MR, Kumar TR, Bo W, Braun JJ, Cardoso-Landa L, Schaffler MB, Moonga BS, Blair HC, Zaidi M (2006) FSH directly regulates bone mass. Cell 125:247–260

    Article  PubMed  CAS  Google Scholar 

  39. Moerman EJ, Teng K, Lipschitz DA, Lecka-Czernik B (2004) Aging activates adipogenic and suppresses osteogenic programs in mesenchymal marrow stroma/stem cells: the role of PPAR-gamma2 transcription factor and TGF-beta/BMP signaling pathways. Aging Cell 3:379–389

    Article  PubMed  CAS  Google Scholar 

  40. Tornvig L, Mosekilde Li, Justesen J, Falk E, Kassem M (2001) Troglitazone treatment increases bone marrow adipose tissue volume but does not affect trabecular bone volume in mice. Calcif Tissue Int 69:46–50

    Article  PubMed  CAS  Google Scholar 

  41. Justesen J, Mosekilde L, Holmes M, Stenderup K, Gasser J, Mullins JJ, Seckl JR, Kassem M (2004) Mice deficient in 11beta-hydroxysteroid dehydrogenase type 1 lack bone marrow adipocytes, but maintain normal bone formation. Endocrinology 145:1916–1925

    Article  PubMed  CAS  Google Scholar 

  42. Martin RB, Zissimos SL (1991) Relationships between marrow fat and bone turnover in ovariectomized and intact rats. Bone 12:123–131

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Jean Sibonga, JSC Bone and Mineral Laboratory, USRA, NASA, Texas, for helpful discussions, Donna Jewison and Julie Burgess in the bone histomorphometry laboratory for help with locating the samples and archived data, and Kelly Hoey for technical assistance.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Khosla.

Additional information

Supported by NIH Grants AG004875 and AG028936.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Syed, F.A., Oursler, M.J., Hefferanm, T.E. et al. Effects of estrogen therapy on bone marrow adipocytes in postmenopausal osteoporotic women. Osteoporos Int 19, 1323–1330 (2008). https://doi.org/10.1007/s00198-008-0574-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-008-0574-6

Keywords

Navigation