Skip to main content

Advertisement

Log in

Quality chain design and optimization by multiple response surface methodology

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

To maintain optimal quality characteristics in the defined specification limits is a vital decision for any industry and service system. To avoid nonconformity in outputs, the stream of variations and their potential causes must be identified so that the response variables fall into desirable limits across the manufacturing or service chain. Response surface methodology is considered as a powerful technique to facilitate the analysis of the mentioned problem. This paper presents the general quality chain design problem as a mathematical program and also proposes a method to solve it using multiple response surface methodology. An example of multistage processes is analyzed by the proposed approach to show its efficacies numerically and analytically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shi J, Zhou S (2009) Quality control and improvement for multistage systems: a survey. IIE Trans 41(9):744–753

    Article  Google Scholar 

  2. Phoomboplab T, Ceglarek D (2008) Process yield improvement through optimum design of fixture layouts in 3D multistation assembly systems. J Manuf Sci Eng 130(6):0610051–06100517

    Article  Google Scholar 

  3. Huang W, Lin J, Kong Z, Ceglarek D (2007) Stream-of-variation (SOVA) modeling—part II: a generic 3D variation model for rigid body assembly in multistation assembly processes. J Manuf Sci Eng 129(4):832–842

    Article  Google Scholar 

  4. Ding Y, Ceglarek D, Shi J (2000) Modeling and diagnosis of multi-stage manufacturing process: part I—state space model. Japan-USA Symposium of Flexible Automation

  5. Liu J, Shi J, Hu SJ (2009) Quality-assured setup planning based on the stream-of-variation model for multi-stage machining processes. IIE Trans 41(4):323–334

    Article  Google Scholar 

  6. Zeng L, Zhou S (2007) Inferring the interactions in complex manufacturing processes using graphical models. Technometrics 49(4):373–381

    Article  MathSciNet  Google Scholar 

  7. Li J, Shi J (2007) Knowledge discovery from observational data for process control using causal Bayesian networks. IIE Trans 39(6):681–690

    Article  Google Scholar 

  8. Zou C, Tsung F, Liu Y (2008) A change point approach for phase I analysis in multistage processes. Technometrics 50(3):344–356

    Article  MathSciNet  Google Scholar 

  9. Zou C, Tsung F (2008) Directional MEWMA schemes for multistage process monitoring and diagnosis. J Qual Tech 40(4):407–427

    MathSciNet  Google Scholar 

  10. Xiang L, Tsung F (2008) Statistical monitoring of multi-stage processes based on engineering models. IIE Trans 40(10):957–970

    Article  Google Scholar 

  11. Li Y, Tsung F (2009) False discovery rate-adjusted charting schemes for multistage process monitoring and fault identification. Technometrics 51(2):186–205

    Article  MathSciNet  Google Scholar 

  12. Mandroli SS, Shrivastava AK, Ding Y (2006) A survey of inspection strategy and sensor distribution studies in discrete-part manufacturing processes. IIE Trans 38(4):309–328

    Article  Google Scholar 

  13. Chen Y, Ding Y, Jin J, Ceglarek D (2006) Integration of process-oriented tolerancing and maintenance planning in design of multistation manufacturing processes. IEEE Trans Autom Sci Eng 3(4):440–453

    Article  Google Scholar 

  14. Cheng KM, Tsai JC (2011) Optimal statistical tolerance allocation of assemblies for minimum manufacturing cost. Appl Mech Mater 52–54:1818–1823

    Article  Google Scholar 

  15. Huang YM, Shiau CS (2009) An optimal tolerance allocation model for assemblies with consideration of manufacturing cost, quality loss and reliability index. Assemb Autom 29(3):220–229

    Article  Google Scholar 

  16. Hung TC, Chan KY (2011) Multi-objective design and tolerance allocation for single- and multi-level systems. J Intell Manuf. doi:10.1007/s10845-011-0608-3, pp. 1–15

    Google Scholar 

  17. Shin S, Kongsuwon P, Cho BR (2010) Development of the parametric tolerance modeling and optimization schemes and cost-effective solutions. Eur J Oper Res 207(3):1728–1741

    Article  MathSciNet  MATH  Google Scholar 

  18. Huang W, Phoomboplab T, Ceglarek D (2009) Process capability surrogate model-based tolerance synthesis for multi-station manufacturing systems. IIE Trans 41(4):309–322

    Article  Google Scholar 

  19. Wazed MA, Ahmed S, Nukman Y (2011) Application of Taguchi method to analyse the impacts of common process and batch size in multistage production system under uncertain conditions. Eur J Industrial Eng 5(2):215–231

    Article  Google Scholar 

  20. Lee BY, Tarng YS (2000) Cutting-parameter selection for maximizing production rate or minimizing production cost in multistage turning operations. J Mater Process Tech 105(1–2):61–66

    Article  Google Scholar 

  21. Mukherjee I, Ray PK (2008) Optimal process design of two-stage multiple responses grinding processes using desirability functions and metaheuristic technique. Appl Soft Comput 8(1):402–421

    Article  Google Scholar 

  22. Mukherjee I, Ray PK (2009) Quality improvement of multistage and multi-response grinding processes: an insight into two different methodologies for parameter optimisation. Int J Prod Qual Manag 4(5):613–643

    Google Scholar 

  23. Mukherjee I, Ray PK (2012) Ascendancy of a modified tabu search for multi-stage non-linear multiple response constrained optimisation problem. Int J Prod Qual Manag 9(3):352–381

    Google Scholar 

  24. Kim K-J, Lin DKJ (2000) Simultaneous optimization of mechanical properties of steel by maximizing exponential desirability functions. J Roy Stat Soc C Appl Stat 49(3):311–325. doi:10.1111/1467-9876.00194

    Article  MathSciNet  MATH  Google Scholar 

  25. Jr. Harrington EC (1965) Desirability function. Ind Qual Contol 21(10):494–498

    Google Scholar 

  26. Derringer GC, Suich R (1980) Simultaneous-optimization of several response variables. J Qual Tech 12(4):214–219

    Google Scholar 

  27. Vining GG (1998) A compromise approach to multiresponse optimization. J Qual Tech 30(4):309–313

    Google Scholar 

  28. Pignatiello JJ (1993) Strategies for robust multiresponse quality engineering. IIE Trans 25(3):5–15

    Article  Google Scholar 

  29. Khuri AI, Conlon M (1981) Simultaneous optimization of multiple responses represented by polynomial regression functions. Technometrics 23(4):363–375

    Article  MATH  Google Scholar 

  30. Chiao CH, Hamada M (2001) Analyzing experiments with correlated multiple responses. J Qual Tech 33(4):451–465

    Google Scholar 

  31. Bashiri M, Hejazi TH (2009) An extension of multi-response optimization in MADM view. J Appl Sci 9(9):1695–1702

    Article  Google Scholar 

  32. Kazemzadeh RB, Bashiri M, Atkinson AC, Noorossana R (2008) A general framework for multiresponse optimization problems based on goal programming. Eur J Oper Res 189(2):421–429. doi:10.1016/j.ejor.2007.05.030

    Article  MathSciNet  MATH  Google Scholar 

  33. Hejazi TH, Bashiri M, Díaz-García JA, Noghondarian K (2012) Optimization of probabilistic multiple response surfaces. Appl Math Model 36(3):1275–1285

    Article  MathSciNet  MATH  Google Scholar 

  34. Abedini V, Shakeri M, Siahmargouie MH (2012) Error analysis in multistage machining process using kinematic analysis of workpiece fixturing. Appl Mech Mater 152–154:430–435

    Article  Google Scholar 

  35. Li Y, Tsung F (2011) Detecting and diagnosing covariance matrix changes in multistage processes. IIE Trans 43(4):259–274

    Article  Google Scholar 

  36. Colledani M, Tolio T (2012) Integrated quality, production logistics and maintenance analysis of multi-stage asynchronous manufacturing systems with degrading machines. CIRP Annals—Manufacturing Technology 61(1):455–458

    Article  Google Scholar 

  37. Zantek PF, Wright GP, Plante RD (2006) A self-starting procedure for monitoring process quality in multistage manufacturing systems. IIE Trans 38(4):293–308

    Article  Google Scholar 

  38. Rotondo A, Young P, Geraghty J (2012) Quality risk prediction at a non-sampling station machine in a multi-product, multi-stage, parallel processing manufacturing system subjected to sequence disorder and multiple stream effects. Ann Oper Res. doi:10.1007/s10479-012-1145-y, pp. 1–23

    Google Scholar 

  39. Niaki STA, Davoodi M (2008) Designing a multivariate–multistage quality control system using artificial neural networks. Int J Prod Res 47(1):251–271

    Article  Google Scholar 

  40. Hejazi TH, Bashiri M, Noghondarian K, Atkinson AC (2011) Multiresponse optimization with consideration of probabilistic covariates. Qual Reliab Eng Int 27(4):437–449. doi:10.1002/qre.1133

    Article  Google Scholar 

  41. Salmasnia A, Baradaran Kazemzadeh R, Seyyed-Esfahani M, Hejazi TH (2013) Multiple response surface optimization with correlated data. Int J Adv Manuf Tech 64(5–8):841–855. doi:10.1007/s00170-012-4056-9

    Article  Google Scholar 

  42. Taguchi G, Chowdhury S, Wu Y, Taguchi S, Yano H (2005) Taguchi’s quality engineering handbook. John Wiley & Sons; ASI Consulting Group, Hoboken- N.J.Livonia, Mich

  43. Montgomery DC (2005) Design and analysis of experiments, 6th edn. Wiley, Hoboken

    MATH  Google Scholar 

  44. Shah HK, Montgomery DC, Carlyle WM (2004) Response surface modeling and optimization in multiresponse experiments using seemingly unrelated regressions. Qual Eng 16(3):387–397

    Article  Google Scholar 

  45. Kamali Nejad M, Vignat F, Villeneuve F (2012) Tolerance analysis in machining using the model of manufactured part (MMP)—Comparison and evaluation of three different approaches. Int J Comput Integrated Manuf 25(2):136–149

    Article  Google Scholar 

  46. Zellner A (1962) An efficient method of estimating seemingly unrelated regressions and tests for aggregation bias. J Am Stat Assoc 57(298):348–368

    Article  MathSciNet  MATH  Google Scholar 

  47. Albert A (1972) Regression and the Moore-Penrose pseudoinverse, 1st edn. Academic Press, Waltham

    MATH  Google Scholar 

  48. Penrose R (1955) A generalized inverse for matrices. Math Proc Camb Phil Soc 51(03):406–413

    Article  MathSciNet  MATH  Google Scholar 

  49. Dresden A (1920) The fourteenth western meeting of the American Mathematical Society. Bull Am Math Soc 26(9):385–396

    Article  MathSciNet  Google Scholar 

  50. Giri NC (1977) Multivariate statistical inference. Academic Press, Waltham

    MATH  Google Scholar 

  51. MATLAB (2011). version 7.13.0.564 (2011b) edn. The MathWorks Inc., Natick, Massachusetts.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirmehdi Seyyed-Esfahani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hejazi, T.H., Seyyed-Esfahani, M. & Mahootchi, M. Quality chain design and optimization by multiple response surface methodology. Int J Adv Manuf Technol 68, 881–893 (2013). https://doi.org/10.1007/s00170-013-4950-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-013-4950-9

Keywords

Navigation