Skip to main content
Log in

Complementary texture and intensity gradient estimation and fusion for watershed segmentation

  • Original Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

In this paper, we identify two current challenges associated with watershed segmentation algorithms which attempt to fuse the visual cues of texture and intensity. The first challenge is that most existing techniques use a competing gradient set which does not allow boundaries to be defined in terms of both visual cues. The second challenge is that these techniques fail to account for the spatial uncertainty inherent in texture gradients. We present a watershed segmentation algorithm which provides a suitable solution to both these challenges and minimises the spatial uncertainty in boundary localisation. This is achieved by a novel fusion algorithm which uses morphological dilation to integrate intensity and texture gradients. A quantitative and qualitative evaluation of results is provided demonstrating that our algorithm outperforms three existing watershed algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blaschke, T.: Object-based contextual image classification built on image segmentation. In: IEEE Workshop on Advances in Techniques for Analysis of Remotely Sensed Data, Washington DC, USA, pp. 113–119 (2003)

  2. Hofmann T., Puzicha J., Buhmann J.M.: Unsupervised texture segmentation in a deterministic annealing framework. IEEE Trans. Pattern Anal. Mach. Intell. 20(8), 803–818 (1998)

    Article  Google Scholar 

  3. Zhang Y.-J.: An overview of image and video segmentation in the last 40 years. In: Zhang, Y.-J. (eds) Advances in Image and Video Segmentation., pp. 1–15. IRM Press, Pennsylvania (2006)

    Chapter  Google Scholar 

  4. Roth, V., Ommer, B.: Exploiting low-level image segmentation for object recognition. Lecture Notes in Computer Science, vol 4174, pp. 11–20. Springer, Heidelberg (2006)

  5. Agarwal S., Awan A., Roth D.: Learning to detect objects in images via a sparse, part-based representation. IEEE Trans. Pattern Anal. Mach. Intell. 26(11), 1475–1490 (2004)

    Article  Google Scholar 

  6. Soille P.: Morphological image analysis: principles and applications. Springer, Berlin (2002)

    Google Scholar 

  7. Martin D.R., Fowlkes C.C., Malik J.: Learning to detect natural image boundaries using local brightness, color, and texture cues. IEEE Trans. Pattern Anal. Mach. Intell. 26(5), 530–549 (2004)

    Article  Google Scholar 

  8. Chaji N., Ghassemian H.: Texture-gradient-based contour detection. European Association for Signal Processing (EURASIP) J Appl. Signal Process. 2006, 1–8 (2006)

    Google Scholar 

  9. O’Callaghan R.J., Bull D.R.: Combined morphological-spectral unsupervised image segmentation. IEEE Trans. Image Process. 14(1), 49–62 (2005)

    Article  Google Scholar 

  10. Malik J., Belongie S., Leung T., Shi J.: Contour and texture analysis for image segmentation. Int. J. Comput. Vis. 43(1), 7–27 (2001)

    Article  MATH  Google Scholar 

  11. Petrou M., Sevilla P.G.: Image processing: dealing with texture. Wiley, London (2006)

    Book  Google Scholar 

  12. Perona P., Malik J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12(7), 629–639 (1990)

    Article  Google Scholar 

  13. Black, M., Sapiro, G.: Edges as outliers: anisotropic smoothing using local image statistics. In: International Conference on Scale-space Theories in Computer Vision, Corfu, Greece, pp. 259–270 (1999)

  14. Deng H., Liu J.: Development of anisotropic diffusion to segment texture images. J. Electron. Imag. 12(2), 307–316 (2003)

    Article  Google Scholar 

  15. Corcoran, P., Winstanley, A.: Watershed segmentation using a multiscale ramp edge merging strategy. In: Proceedings of International Conference on Machine Vision and Image Processing, NUI Maynooth, Ireland, pp. 158–168 (2007)

  16. Clausi D.A., Jernigan M.E.: Designing Gabor filters for optimal texture separability. Pattern Recognit. 33(11), 1835–1849 (2000)

    Article  Google Scholar 

  17. DeVeaux R., Velleman P.F., Bock D.E.: Stats: Data and Models. Addison Wesley, Reading (2004)

    Google Scholar 

  18. Shao, J., Forstner, W.: Gabor wavelets for texture edge extraction. In: ISPRS Commission III Symposium on Spatial Information from Digital Photogrammetry and Computer Vision, Munich, pp. 745–752 (1994)

  19. Kruizinga P., Petkov N.: Nonlinear operator for oriented texture. IEEE Trans. Image Process. 8(10), 1395–1407 (1999)

    Article  MathSciNet  Google Scholar 

  20. Jobanputra R., Clausi D.A.: Preserving boundaries for image texture segmentation using grey level co-occurring probabilities. Pattern Recognit. 39(2), 234–245 (2006)

    Article  MATH  Google Scholar 

  21. Chen J., Pappas T.N., Mojsilovic A., Rogowitz B.E.: Adaptive perceptual color-texture image segmentation. IEEE Trans. Image Process. 14(10), 1524–1536 (2005)

    Article  Google Scholar 

  22. Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its applications to evaluating segmentation algorithms and measuring ecological statistics. In: International Conference on Computer Vision, Vancouver, Canada, pp. 416–423 (2001)

  23. Unnikrishnan R., Pantofaru C., Hebert M.: Toward objective evaluation of image segmentation algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 29(6), 929–944 (2007)

    Article  Google Scholar 

  24. Zhang Y.: Optimization of building detection in satellite images by combining multispectral classification and texture filtering. ISPRS J Photogramm Remote Sens. 54(1), 50–60 (1999)

    Article  Google Scholar 

  25. Herold L.X.M., Clarke K.C.: Spatial metrics and image texture for mapping urban land use. Photogramm. Eng. Remote Sens. 69(9), 991–1001 (2003)

    Google Scholar 

  26. Puissant A., Hirsch J., Weber C.: The utility of texture analysis to improve per-pixel classification for high to very high spatial resolution imagery. Int. J. Remote Sens. 26(4), 733–745 (2005)

    Article  Google Scholar 

  27. Ma W.-Y., Manjunath B.S.: EdgeFlow: a technique for boundary detection and image segmentation. IEEE Trans. Image Proc. 9(8), 1375–1388 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  28. Deng Y., Manjunath B.S.: Unsupervised segmentation of color-texture regions in images and video. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 800–810 (2001)

    Article  Google Scholar 

  29. Canny J.F.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8(6), 679–698 (1986)

    Article  Google Scholar 

  30. JSEG C++ implementation. http://vision.ece.ucsb.edu/segmentation/jseg/. Accessed 30–5–2009 (Accessed 25-6-2010)

  31. Corcoran, P., Mooney, P., Winstanley, A., Tilton, J.: Convexity grouping of salient part contours. In: First Intentional Workshop on Parts and Attributes, European Conference on Computer Vision (Under Review) (2010)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Padraig Corcoran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Corcoran, P., Winstanley, A. & Mooney, P. Complementary texture and intensity gradient estimation and fusion for watershed segmentation. Machine Vision and Applications 22, 1027–1045 (2011). https://doi.org/10.1007/s00138-010-0310-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00138-010-0310-z

Keywords

Navigation