Skip to main content
Log in

Polymorphism, distribution, and segregation of AFLP markers in a doubled haploid rice population

  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

We exploited the newly developed amplified fragment length polymorphism (AFLP) technique to study the polymorphism, distribution and inheritance of AFLP markers with a doubled haploid rice population derived from ‘IR64’/‘Azucena’. Using only 20 pairs of primer combinations, we detected 945 AFLP bands of which 208 were polymorphic. All 208 AFLP markers were mapped and distributed over all 12 chromosomes. When these were compared with RFLP markers already mapped in the population, we found the AFLP markers to be highly polymorphic in rice and to follow Mendelian segregation. As linkage map of rice can be generated rapidly with AFLP markers they will be very useful for marker-assisted backcrossing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9:208–218

    Article  CAS  Google Scholar 

  • Becker J, Vos P, Kuiper M, Salamini F, Heun M (1995) Combined mapping of AFLP and RFLP markers in barley. Mol Gen Genet 249:65–73

    Article  PubMed  CAS  Google Scholar 

  • Causse M, Fulton TM, Cho YG, Ahn SN, Chunwongse EJ, Wu K, Xiao J, Yu Z, Ronald PC, Harrington SB, Second G, McCouch SR, Tanksley SD (1994) Saturated molecular map of the rice genome based on an interspecific backcross population. Genetics 138:1251–1274.

    PubMed  CAS  Google Scholar 

  • Dellaporta SL, Wood J, Hick JB (1983) A plant DNA mini preparation; version II. Plant Mol Biol Rep 1:19–21

    Article  CAS  Google Scholar 

  • Guiderdoni E, Galinato E, Luistro J, Vergara G (1992) Anther culture of tropical japonica X indica hybrids of rice (Oryza sativa L.). Euphytica 62:219–224

    Article  Google Scholar 

  • Hodges TK, Peng J, Lyznik LA, Koetje DS (1991) Transformation and regeneration of rice protoplasts. In: Khush G, Toenniessen G (eds) Rice biotechnology. IRRI, Manila, Philippines, pp 157–174

    Google Scholar 

  • Huang N, McCouch SR, Mew T, Parco A, Guiderdoni E (1994) Development of a RFLP map from a doubled haploid population of rice. Rice Genet Newsl 11:134–137

    Google Scholar 

  • Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Google Scholar 

  • Kurata N, Nagamura Y, Yamamoto K, Harushima Y, Sue N, Wu J, Antonio BA, Shomura A, Shimizu T, Lin S-Y, Inoue T, Fukuda A, Shimano T, Kuboki Y, Toyama T, Miyamoto Y, Kirihara T, Hayasaka K, Miyao A, Monna L, Zhong HS, Tamura Y, Wang Z-X, Momma T, Umehara Y, Yano M, Sasaki T, Minobe Y (1994) A-300-kilobase interval genetic map of rice including 883 expressed sequences. Nat Genet 8:365–372

    Article  PubMed  CAS  Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    Article  PubMed  CAS  Google Scholar 

  • Litt M, Luty J (1989) A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle action gene. Am J Hum Genet 44:391–401

    Google Scholar 

  • Lorieux M, Petrov M, Huang N, Faure J, Guiderdoni E, Chesquiere A (1996) Aroma in rice is controlled by a major gene and at least two minor QTLs. Theor Appl Genet (in press)

  • Moore G, Devos KM, Wang Z, Gale MD (1995) Grasses line up and form a circle. Curr Biol 5:737–739

    Article  PubMed  CAS  Google Scholar 

  • Olson M, Hood L, Cantor C, Botstein D (1989) A common language for physical mapping of the human genome. Science 245: 1434–1435

    Article  PubMed  CAS  Google Scholar 

  • Rafalski JA, Tingey SV (1993) Genetic diagnostics in plant breeding:RAPDS, microsatellites and machines. Trends Genet 9: 275–280

    Article  PubMed  CAS  Google Scholar 

  • Tanksley SD, Young ND, Patterson AH, Bonierbale MW (1989) RFLP mapping in plant breeding: new tools for an old science. Bio/Technology 7:257–264

    Article  CAS  Google Scholar 

  • Thomas CM, Vos P, Zabeau M, Jones DA, Norcott KA, Chadwick BP, Jones JDG (1995) Identification of amplified restriction fragment polymorphism (AFLP) markers tightly linked to the tomato Cf-9 gene for resistance to Cladosporium fulvum. Plant J 8:785–794

    Article  PubMed  CAS  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP:a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  PubMed  CAS  Google Scholar 

  • Williams JGK, Kubelik AR, Livak KJ, Rafalski JA, Tingey VS (1990) DNA polymorphism amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18:6531–6535

    Article  PubMed  CAS  Google Scholar 

  • Zabeau M, Vos P 1993 Selective restriction fragment amplification : a general method for DNA fingerprinting. European Patent Application number : 92402629.7, Publication number 0534858 Al

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by G. Wenzel

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maheswaran, M., Subudhi, P.K., Nandi, S. et al. Polymorphism, distribution, and segregation of AFLP markers in a doubled haploid rice population. Theoret. Appl. Genetics 94, 39–45 (1997). https://doi.org/10.1007/s001220050379

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s001220050379

Key words

Navigation