Skip to main content
Log in

Genetic variants in candidate genes influencing NAFLD progression

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Nonalcoholic fatty liver disease (NAFLD) is a metabolic disorder including simple steatosis and nonalcoholic steatohepatitis (NASH). Advanced stages of NASH result ultimately in fibrosis, cirrhosis, and hepatocarcinoma. A diagnosis of NASH entails an increased risk of both liver-related and cardiovascular mortality as worsening of the metabolic syndrome. Because of its escalation, many investigations have been performed to elucidate the pathophysiologic origins of the disease progression. Human epidemiologic studies describing polymorphisms in a number of genes involved in metabolic dysfunctions have contributed to clarify the causes leading to the disease evolution. In this review, we attempt to outline critically the most recently identified genetic variants in NAFLD patients to identify possible risk factors promoting the progression of the disease. The evaluation of altered genotypes together with other clinical variables may facilitate the clinical management of these patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Angulo P (2002) Nonalcoholic fatty liver disease. N Engl J Med 346:1221–1231

    PubMed  CAS  Google Scholar 

  2. Malaguarnera M, Di Rosa M, Nicoletti F, Malaguarnera L (2009) Molecular mechanisms involved in NAFLD progression. J Mol Med 87:679–695

    PubMed  CAS  Google Scholar 

  3. Targher G, Bertolini L, Rodella S, Zoppini G, Zenari L, Falezza G (2006) Associations between liver histology and cortisol secretion in subjects with nonalcoholic fatty liver disease. Clin Endocrinol (Oxf) 64(3):337–341

    CAS  Google Scholar 

  4. Wilfred de Alwis NM, Day CP (2007) Genetics of alcoholic liver disease and nonalcoholic fatty liver disease. Semin Liver Dis 27:44–54

    PubMed  Google Scholar 

  5. Loomb R, Rao F, Zhang L, Khandrika S, Ziegler MG, Brenner DA, O'Connor DT (2010) Genetic covariance between gamma-glutamyl transpeptidase and fatty liver risk factors: role of beta2-adrenergic receptor genetic variation in twins. Gastroenterology 139:836–845

    Google Scholar 

  6. Farrell GC, Larter CZ (2006) Nonalcoholic fatty liver disease: from steatosis to cirrhosis. Hepatology 43:S99–S112

    PubMed  CAS  Google Scholar 

  7. Bradbury MW, Berk PD (2004) Lipid metabolism in hepatic steatosis. Clin Liver Dis 8:639–671

    PubMed  Google Scholar 

  8. de Almeida IT, Cortez-Pinto H, Fidalgo G, Rodrigues D, Camilo ME (2002) Plasma total and free fatty acids composition in human non-alcoholic steatohepatitis. Clin Nutr 21:219–223

    PubMed  Google Scholar 

  9. Petersen KF, Dufour S, Befroy D, Lehrke M, Hendler RE, Shulman GI (2005) Reversal of nonalcoholic hepatic steatosis, hepatic insulin resistance, and hyperglycemia by moderate weight reduction in patients with type 2 diabetes. Diabetes 54:603–608

    PubMed  CAS  Google Scholar 

  10. Dentin R, Benhamed F, Pégorier JP, Foufelle F, Viollet B, Vaulont S, Girard J, Postic C (2005) Polyunsaturated fatty acids suppress glycolytic and lipogenic genes through the inhibition of chrebp nuclear protein translocation. J Clin Invest 115:2843–2854

    PubMed  CAS  Google Scholar 

  11. Zhang D, Liu ZX, Choi CS, Tian L, Kibbey R, Dong J, Cline GW, Wood PA, Shulman GI (2007) Mitochondrial dysfunction due to long-chain acyl-coa dehydrogenase deficiency causes hepatic steatosis and hepatic insulin resistance. Proc Natl Acad Sci USA 104:17075–17080

    PubMed  CAS  Google Scholar 

  12. Lavoie JM, Gauthier MS (2006) Regulation of fat metabolism in the liver: link to non-alcoholic hepatic steatosis and impact of physical exercise. Cell Mol Life Sci 63:1393–1409

    PubMed  CAS  Google Scholar 

  13. Malaguarnera L, Di Rosa M, Zambito AM, Dell'Ombra N, Nicoletti F, Malaguarnera M (2006) Chitotriosidase gene expression in Kupffer cells from patients with non-alcoholic fatty liver disease. Gut 55:1313–1320

    PubMed  CAS  Google Scholar 

  14. Hijona E, Hijona L, Arenas JI, Bujanda L (2010) Inflammatory mediators of hepatic steatosis. Mediators Inflamm 2010:837419

    PubMed  Google Scholar 

  15. Müssig K, Heni M, Thamer C, Kantartzis K, Machicao F, Stefan N, Fritsche A, Häring HU, Staiger H (2010) The ENPP1 K121Q polymorphism determines individual susceptibility to the insulin-sensitizing effect of lifestyle intervention. Diabetologia 53:504–509

    PubMed  Google Scholar 

  16. Dongiovanni P, Valenti L, Rametta R, Daly AK, Nobili V, Mozzi E, Leathart JB, Pietrobattista A, Burt AD, Maggioni M et al (2010) Genetic variants regulating insulin receptor signalling are associated with the severity of liver damage in patients with nonalcoholic fatty liver disease. Gut 59:267–273

    PubMed  CAS  Google Scholar 

  17. Pajvani UB, Du X, Combs TP, Berg AH, Rajala MW, Schulthess T, Engel J, Brownlee M, Scherer PE (2003) Structure-function studies of the adipocyte-secreted hormone Acrp30/adiponectin. Implications for metabolic regulation and bioactivity. J Biol Chem 278:9073–9085

    PubMed  CAS  Google Scholar 

  18. Waki H, Yamauchi T, Kamon J, Ito Y, Uchida S, Kita S, Hara K, Hada Y, Vasseur F, Froguel P et al (2003) Impaired multimerization of human adiponectin mutants associated with diabetes. Molecular structure and multimer formation of adiponectin. J Biol Chem 278:40352–40363

    PubMed  CAS  Google Scholar 

  19. Yamauchi T, Kadowaki T (2008) Physiological and pathophysiological roles of adiponectin and adiponectin receptors in the integrated regulation of metabolic and cardiovascular diseases. Int J Obes (Lond) 32(Suppl 7):S13–S28

    CAS  Google Scholar 

  20. Bertolani C, Marra F (2010) Role of adipocytokines in hepatic fibrosis. Curr Pharm Des 16:1929–1940

    PubMed  CAS  Google Scholar 

  21. Xu A, Wang Y, Keshaw H, Xu LY, Lam KS, Cooper GJ (2003) The fat-derived hormone adiponectin alleviates alcoholic and nonalcoholic fatty liver diseases in mice. J Clin Invest 112:91–100

    PubMed  CAS  Google Scholar 

  22. Pagano C, Soardo G, Esposito W, Fallo F, Basan L, Donnini D, Federspil G, Sechi LA, Vettor R (2005) Plasma adiponectin is decreased in nonalcoholic fatty liver disease. Eur J Endocrinol 152:113–118

    PubMed  CAS  Google Scholar 

  23. Ma H, Gomez V, Lu L, Yang X, Wu X, Xiao SY (2009) Expression of adiponectin and its receptors in livers of morbidly obese patients with non-alcoholic fatty liver disease. J Gastroenterol Hepatol 24:233–237

    PubMed  CAS  Google Scholar 

  24. Musso G, Gambino R, De Michieli F, Durazzo M, Pagano G, Cassader M (2008) Adiponectin gene polymorphisms modulate acute adiponectin response to dietary fat: possible pathogenetic role in NASH. Hepatology 47:1167–1177

    PubMed  CAS  Google Scholar 

  25. Tokushige K, Hashimoto E, Noto H, Yatsuji S, Taniai M, Torii N, Shiratori K (2009) Influence of adiponectin gene polymorphisms in Japanese patients with non-alcoholic fatty liver disease. J Gastroenterol 44:976–982

    PubMed  CAS  Google Scholar 

  26. Wang ZL, Xia B, Shrestha U, Jiang L, Ma CW, Chen Q, Chen H, Hu ZG (2008) Correlation between adiponectin polymorphisms and non-alcoholic fatty liver disease with or without metabolic syndrome in Chinese population. J Endocrinol Invest 31:1086–1091

    PubMed  CAS  Google Scholar 

  27. González-Sánchez JL, Martínez-Calatrava MJ, Martínez-Larrad MT, Zabena C, Fernández-Pérez C, Laakso M, Serrano-Ríos M (2006) Interaction of the -308G/A promoter polymorphism of the tumor necrosis factor-alpha gene with single-nucleotide polymorphism 45 of the adiponectin gene: effect on serum adiponectin concentrations in a Spanish population. Clin Chem 52:97–103

    PubMed  Google Scholar 

  28. Jang Y, Chae JS, Koh SJ, Hyun YJ, Kim JY, Jeong YJ, Park S, Ahn CM, Lee JH (2008) The influence of the adiponectin gene on adiponectin concentrations and parameters of metabolic syndrome in non-diabetic Korean women. Clin Chim Acta 391:85–90

    PubMed  CAS  Google Scholar 

  29. Sone Y, Yamaguchi K, Fujiwara A, Kido T, Kawahara K, Ishiwaki A, Kondo K, Morita Y, Tominaga N, Otsuka Y (2010) Association of lifestyle factors, polymorphisms in adiponectin, perilipin and hormone sensitive lipase, and clinical markers in Japanese males. J Nutr Sci Vitaminol (Tokyo) 56:123–131

    Google Scholar 

  30. Targher G, Bertolini L, Rodella S, Zoppini G, Zenari L, Falezza G (2006) Associations between liver histology and cortisol secretion in subjects with nonalcoholic fatty liver disease. Clin Endocrinol (Oxf) 64:337–341

    CAS  Google Scholar 

  31. John S, Johnson TA, Sung M-H, Biddie SC, Trump S, Koch-Paiz CA, Davis SR, Walker R, Meltzer PS, Hager GL (2009) Kinetic complexity of the global response to glucocorticoid receptor action. Endocrinology 150:1766–1774

    PubMed  CAS  Google Scholar 

  32. Lemke U, Krones-Herzig A, Diaz MB, Narvekar P, Zeigler A, Vegiopoulos A, Cato AC, Bohl S, Klingmuller U, Screaton RA et al (2008) The glucocorticoid receptor controls hepatic dyslipidemia through Hes 1. Cell Metab 8:212–223

    PubMed  CAS  Google Scholar 

  33. Letteron P, Brahimi-Bourouina N, Robin M-A, Moreau A, Feldman G, Pessayre D (1997) Glucocorticoids inhibit mitochondrial matrix acyl-CoA dehydrogenases and fatty acid β-oxidation. Am J Physiol Gastrointest Liver Physiol 272:G1141–G1150

    CAS  Google Scholar 

  34. Chen W, Roeder RG (2007) The mediator subunit MED1/TRAP220 is required for optimal glucocorticoid receptor-mediated transcription activation. Nucleic Acids Res 35:6161–6169

    PubMed  CAS  Google Scholar 

  35. Wetterau JR, Lin MC, Jamil H (1997) Microsomal triglyceride transfer protein. Biochim Biophys Acta 1345:136–150

    PubMed  CAS  Google Scholar 

  36. Gambino R, Cassader M, Pagano G, Durazzo M, Musso G (2007) Polymorphism in microsomal triglyceride transfer protein: a link between liver disease and atherogenic postprandial lipid profile in NASH? Hepatology 45:1097–1107

    PubMed  CAS  Google Scholar 

  37. Musso G, Gambino R, Cassader M (2010) Lipoprotein metabolism mediates the association of MTP polymorphism with beta-cell dysfunction in healthy subjects and in nondiabetic normolipidemic patients with nonalcoholic steatohepatitis. J Nutr Biochem 21:834–840

    PubMed  CAS  Google Scholar 

  38. Au WS, Kung HF, Lin MC (2003) Regulation of microsomal triglyceride transfer protein gene by insulin in HepG2 cells. Roles of MAPK/erk and MAPK/p38. Diabetes 52:1073–1108

    PubMed  CAS  Google Scholar 

  39. Jun DW, Han JH, Jang EC, Kim SH, Kim SH, Jo YJ, Park YS, Chae JD (2009) Polymorphisms of microsomal triglyceride transfer protein gene and phosphatidylethanolamine N-methyltransferase gene in alcoholic and nonalcoholic fatty liver disease in Koreans. Eur J Gastroenterol Hepatol 21:667–672

    PubMed  CAS  Google Scholar 

  40. Namikawa C, Shu-Ping Z, Vyselaar JR, Nozaki Y, Nemoto Y, Ono M, Akisawa N, Saibara T, Hiroi M, Enzan H et al (2004) Polymorphisms of microsomal triglyceride transfer protein gene and manganese superoxide dismutase gene in non-alcoholic steatohepatitis. J Hepatol 40:781–786

    PubMed  CAS  Google Scholar 

  41. Oliveira CP, Stefano JT, Cavaleiro AM, Zanella Fortes MA, Vieira SM, Rodrigues Lima VM, Santos TE, Santos VN, de Azevedo Salgado AL, Parise ER et al (2010) Association of polymorphisms of glutamate-cystein ligase and microsomal triglyceride transfer protein genes in non-alcoholic fatty liver disease. J Gastroenterol Hepatol 25:357–361

    PubMed  CAS  Google Scholar 

  42. Sazci A, Akpinar G, Aygun C, Ergul E, Senturk O, Hulagu S (2008) Association of apolipoprotein E polymorphisms in patients with non-alcoholic steatohepatitis. Dig Dis Sci 53:3218–3224

    PubMed  CAS  Google Scholar 

  43. Yang MH, Son HJ, Sung JD, Choi YH, Koh KC, Yoo BC, Paik SW (2005) The relationship between apolipoprotein E polymorphism, lipoprotein (a) and fatty liver disease. Hepatogastroenterology 52:1832–1835

    PubMed  CAS  Google Scholar 

  44. Mensenkamp AR, Havekes LM, Romijn JA, Kuipers F (2001) Hepatic steatosis and very low density lipoprotein secretion: the involvement of apolipoprotein E. J Hepatol 35:816–822

    PubMed  CAS  Google Scholar 

  45. Demirag MD, Onen HI, Karaoguz MY, Dogan I, Karakan T, Ekmekci A, Guz G (2007) Apolipoprotein E gene polymorphism in nonalcoholic fatty liver disease. Dig Dis Sci 52:3399–3403

    PubMed  CAS  Google Scholar 

  46. Riches FM, Watts GF, van Bockxmeer FM, Hua J, Song S, Humphries SE, Talmud PJ (1998) Apolipoprotein B signal peptide and apolipoprotein E genotypes as determinants of the hepatic secretion of VLDL apoB in obese men. J Lipid Res 39:1752–1758

    PubMed  CAS  Google Scholar 

  47. Petersen KF, Dufour S, Hariri A, Nelson-Williams C, Foo JN, Zhang XM, Dziura J, Lifton RP, Shulman GI (2010) Apolipoprotein C3 gene variants in nonalcoholic fatty liver disease. N Engl J Med 362:1082–1089

    PubMed  CAS  Google Scholar 

  48. Kozlitina J, Boerwinkle E, Cohen JC, Hobbs HH (2011) Dissociation between APOC3 variants, hepatic triglyceride content and insulin resistance. Hepatology 53:467–474

    PubMed  CAS  Google Scholar 

  49. Romeo S, Kozlitina J, Xing C, Pertsemlidis A, Cox D, Pennacchio LA, Boerwinkle E, Cohen JC, Hobbs HH (2008) Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat Genet 40:1461–1465

    PubMed  CAS  Google Scholar 

  50. Sookoian S, Castaño GO, Burgueño AL, Gianotti TF, Rosselli MS, Pirola CJ (2009) A nonsynonymous gene variant in the adiponutrin gene is associated with nonalcoholic fatty liver disease severity. J Lipid Res 50:2111–2116

    PubMed  CAS  Google Scholar 

  51. Romeo S, Sentinelli F, Dash S, Yeo GS, Savage DB, Leonetti F, Capoccia D, Incani M, Maglio C, Iacovino M et al (2010) Morbid obesity exposes the association between PNPLA3 I148 M (rs738409) and indices of hepatic injury in individuals of European descent. Int J Obes (Lond) 34:190–194

    CAS  Google Scholar 

  52. Valenti L, Al-Serri A, Daly AK, Galmozzi E, Rametta R, Dongiovanni P, Nobili V, Mozzi E, Roviaro G, Vanni E et al (2010) Homozygosity for the patatin-like phospholipase- 3/adiponutrin I148 M polymorphism influences liver fibrosis in patients with nonalcoholic fatty liver disease. Hepatology 51:1209–1217

    PubMed  CAS  Google Scholar 

  53. Jenkins CM, Mancuso DJ, Yan W, Sims HF, Gibson B, Gross RW (2004) Identification, cloning, expression, and purification of three novel human calcium-independent phospholipase A2 family members possessing triacylglycerol lipase and acylglycerol transacylase activities. J Biol Chem 279:48968–48975

    PubMed  CAS  Google Scholar 

  54. Faraj M, Beauregard G, Loizon E, Moldes M, Clement K, Tahiri Y, Cianflone K, Vidal H, Rabasa-Lhoret R (2006) Insulin regulation of gene expression and concentrations of white adipose tissue-derived proteins in vivo in healthy men: relation to adiponutrin. J Endocrinol 191:427–435

    PubMed  CAS  Google Scholar 

  55. He S, McPhaul C, Li JZ, Garuti R, Kinch L, Grishin NV, Cohen JC, Hobbs HH (2010) A sequence variation (I148M) in PNPLA3 associated with nonalcoholic fatty liver disease disrupts triglyceride hydrolysis. J Biol Chem 285:6706–6715

    PubMed  CAS  Google Scholar 

  56. Johansson LE, Johansson LM, Danielsson P, Norgren S, Johansson S, Marcus C, Ridderstråle M (2009) Genetic variance in the adiponutrin gene family and childhood obesity. PLoS One 4:5327

    Google Scholar 

  57. Hotta K, Yoneda M, Hyogo H, Ochi H, Mizusawa S, Ueno T, Chayama K, Nakajima A, Nakao K, Sekine A (2010) Association of the rs738409 polymorphism in PNPLA3 with liver damage and the development of nonalcoholic fatty liver disease. BMC Med Genet 11:172

    PubMed  CAS  Google Scholar 

  58. Kollerits B, Coassin S, Beckmann ND, Teumer A, Kiechl S, Döring A, Kavousi M, Hunt SC, Lamina C, Paulweber B et al (2009) Genetic evidence for a role of adiponutrin in the metabolism of apolipoprotein B-containing lipoproteins. Hum Mol Genet 18:4669–4676

    PubMed  CAS  Google Scholar 

  59. Speliotes EK, Butler JL, Palmer CD, Voight BF, GIANT Consortium; MIGen Consortium, NASH CRN, Hirschhorn JN (2010) PNPLA3 variants specifically confer increased risk for histologic nonalcoholic fatty liver disease but not metabolic disease. Hepatology 52:904–912

    PubMed  CAS  Google Scholar 

  60. Rotman Y, Koh C, Zmuda JM, Kleiner DE, Liang TJNASHCRN (2010) The association of genetic variability in patatin-like phospholipase domaincontaining protein 3 (PNPLA3) with histological severity of nonalcoholic fatty liver disease. Hepatology 52:894–903

    PubMed  CAS  Google Scholar 

  61. Johansson LE, Lindblad U, Larsson CA, Rastam L, Ridderstrale M (2008) Polymorphisms in the adiponutrin gene are associated with increased insulin secretion and obesity. Eur J Endocrinol 159:577–583

    PubMed  CAS  Google Scholar 

  62. Kantartzis K, Peter A, Machicao F, Machann J, Wagner S, Königsrainer I, Königsrainer A, Schick F, Fritsche A, Häring HU et al (2009) Dissociation between fatty liver and insulin resistance in humans carrying a variant of the patatin-like phospholipase 3 gene. Diabetes 58:2616–2623

    PubMed  CAS  Google Scholar 

  63. Santoro N, Kursawe R, D'Adamo E, Dykas DJ, Zhang CK, Bale AE, Calí AM, Narayan D, Shaw MM, Pierpont B et al (2010) A common variant in the patatin-like phospholipase 3 gene (PNPLA3) is associated with fatty liver disease in obese children and adolescents. Hepatology 52:1189–1192

    Google Scholar 

  64. Huang Y, He S, Li JZ, Seo YK, Osborne TF, Cohen JC, Hobbs HH (2010) A feed-forward loop amplifies nutritional regulation of PNPLA3. Proc Natl Acad Sci USA 107:7892–7897

    PubMed  CAS  Google Scholar 

  65. Berger J, Moller DE (2002) The mechanism of action of PPARs. Ann Rev Med 53:409–435

    PubMed  CAS  Google Scholar 

  66. Stienstra R, Saudale F, Duval C, Keshtkar S, Groener JE, van Rooijen N, Staels B, Kersten S, Müller M (2010) Kupffer cells promote hepatic steatosis via interleukin-1beta-dependent suppression of peroxisome proliferator activated receptor alpha activity. Hepatology 51:511–522

    PubMed  CAS  Google Scholar 

  67. Merriman RB, Aouizerat BE, Molloy MJ, Kane JP, Bacon B, Bass NM (2001) A genetic mutation in the peroxisome proloiferator-activated receptor alpha gene in patients with nonalcoholic steatohepatitis. Hepatology 34:441

    Google Scholar 

  68. Chen S, Li Y, Li S, Yu C (2008) A Val227Ala substitution in the peroxisome proliferator activated receptor alpha (PPAR alpha) gene associated with non-alcoholic fatty liver disease and decreased waist circumference and waist-to-hip ratio. J Gastroenterol Hepatol 23:1415–1418

    PubMed  CAS  Google Scholar 

  69. Yamazaki T, Shiraishi S, Kishimoto K, Miura S, Ezaki O (2010) An increase in liver PPARgamma2 is an initial event to induce fatty liver in response to a diet high in butter: PPARgamma2 knockdown improves fatty liver induced by high-saturated fat. J Nutr Biochem 22(6):543–553

    PubMed  Google Scholar 

  70. Gastaldelli A, Harrison SA, Belfort-Aguilar R, Hardies LJ, Balas B, Schenker S, Cusi K (2009) Importance of changes in adipose tissue insulin resistance to histological response during thiazolidinedione treatment of patients with nonalcoholic steatohepatitis. Hepatology 50:1087–1093

    PubMed  CAS  Google Scholar 

  71. Yen CJ, Beamer BA, Negri C, Silver K, Brown KA, Yarnall DP, Burns DK, Roth J, Shuldiner AR (1997) Molecular scanning of the human peroxisome proliferator activated receptor gamma (hPPAR gamma) gene in diabetic Caucasians: identification of a Pro12Ala PPAR gamma 2 missense mutation. Biochem Biophys Res Commun 241:270–274

    PubMed  CAS  Google Scholar 

  72. Dongiovanni P, Rametta R, Fracanzani AL, Benedan L, Borroni V, Maggioni P, Maggioni M, Fargion S, Valenti L (2010) Lack of association between peroxisome proliferator activated receptors alpha and gamma2 polymorphisms and progressive liver damage in patients with nonalcoholic fatty liver disease: a case control study. BMC Gastroenterol 10:102

    PubMed  Google Scholar 

  73. Wispé JR, Clark JC, Burhans MS, Kropp KE, Korfhagen TR, Whitsett JA (1989) Synthesis and processing of the precursor for human manganese superoxide dismutase. Biochim Biophys Acta 994:30–36

    PubMed  Google Scholar 

  74. Pessayre D, Mansouri A, Fromenty B (2002) Nonalcoholic steatosis and steatohepatitis. V. Mitochondrial dysfunction in steatohepatitis. Am J Physiol Gastrointest Liver Physiol 282:G193–G199

    PubMed  CAS  Google Scholar 

  75. Van Landeghem GF, Tabatabaie P, Kucinskas V, Saha N, Beckman G (1999) Ethnic variation in the mitochondrial targeting sequence polymorphism of MnSOD. Hum Hered 49:190–193

    PubMed  Google Scholar 

  76. Bugianesi E, Manzini P, D’Antico S, Vanni E, Longo F, Leone N, Massarenti P, Piga A, Marchesini G, Rizzetto M (2004) Relative contribution of iron burden, HFE mutations and insulin resistance to fibrosis in nonalcoholic fatty liver. Hepatology 3:179–187

    Google Scholar 

  77. Nelson JE, Bhattacharya R, Lindor KD, Chalasani N, Raaka S, Heathcote EJ, Miskovsky E, Shaffer E, Rulyak SJ, Kowdley KV (2007) HFE C282Y mutations are associated with advanced hepatic fibrosis in Caucasians with nonalcoholic steatohepatitis. Hepatology 46:723–729

    PubMed  CAS  Google Scholar 

  78. Altes A, Bach V, Ruiz A, Esteve A, Remacha AF, Sardà MP, Felez J, Baiget M (2009) Does the SLC40A1 gene modify HFE-related haemochromatosis phenotypes? Ann Hematol 88:341–345

    PubMed  CAS  Google Scholar 

  79. Ruddell RG, Hoang-Le D, Barwood JM, Rutherford PS, Piva TJ, Watters DJ, Santambrogio P, Arosio P, Ramm GA (2009) Ferritin functions as a proinflammatory cytokine via ironindependent protein kinase C zeta/nuclear factor kappa B-regulated signaling in rat hepatic stellate cells. Hepatology 49:887–900

    PubMed  CAS  Google Scholar 

  80. Malaguarnera L, Madeddu R, Palio E, Arena N, Malaguarnera M (2005) Heme oxygenase-1 levels and oxidative stress-related parameters in non-alcoholic fatty liver disease patients. J Hepatol 42:585–591

    PubMed  CAS  Google Scholar 

  81. Valenti L, Dongiovanni P, Piperno A, Fracanzani AL, Maggioni M, Rametta R, Loria P, Casiraghi MA, Suigo E, Ceriani R et al (2006) Alpha1-antitrypsin mutations in NAFLD: high prevalence and association with altered iron metabolism but not with liver damage. Hepatology 44:857–864

    PubMed  CAS  Google Scholar 

  82. Valenti L, Fracanzani AL, Bugianesi E, Dongiovanni P, Galmozzi E, Vanni E, Canavesi E, Lattuada E, Roviaro G, Marchesini G et al (2010) HFE genotype, parenchymal iron accumulation, and liver fibrosis in patients with nonalcoholic fatty liver disease. Gastroenterology 138:905–912

    PubMed  CAS  Google Scholar 

  83. Valenti L, Canavesi E, Galmozzi E, Dongiovanni P, Rametta R, Maggioni P, Maggioni M, Fracanzani AL, Fargion S (2010) Beta-globin mutations are associated with parenchymal siderosis and fibrosis in patients with non-alcoholic fatty liverdisease. J Hepatol 53:927–933

    PubMed  CAS  Google Scholar 

  84. Crespo J, Cayon A, Fernandez-Gil P, Hernandez-Guerra M, Mayorga M, Domiguez-Diez A, Fernández-Escalante JC, Pons-Romero F (2001) Gene expression of tumor necrosis factor alpha and TNF-receptors, p55 and p75, in nonalcoholic steatohepatitis patients. Hepatology 34:1158–1163

    PubMed  CAS  Google Scholar 

  85. Bedossa P, Paradis V (1995) Transforming growth factor-beta (TGF-beta): a key-role in liver fibrogenesis. J Hepatol 22:37–42

    PubMed  CAS  Google Scholar 

  86. Nguyen MT, Satoh H, Favelyukis S, Babendure JL, Imamura T, Sbodio JI, Zalevsky J (2005) JNK and tumor necrosis factor alpha mediate free fatty acid-induced insulin resistance in 3T3-L1 adipocytes. J Biol Chem 280:35361–35371

    PubMed  CAS  Google Scholar 

  87. Shimada M, Hashimoto E, Kaneda H, Noguchi S, Hayashi N (2002) Nonalcoholic steatohepatitis: risk factors for liver fibrosis. Hepatol Res 24:429–438

    PubMed  Google Scholar 

  88. Fontaine-Bisson B, Wolever TM, Chiasson JL, Rabasa-Lhoret R, Maheux P, Josse RG, Leiter LA, Rodger NW, Ryan EA, El-Sohemy A (2007) Tumor necrosis factor alpha-238G>A genotype alters postprandial plasma levels of free fatty acids in obese individuals with type 2 diabetes mellitus. Metabolism 56:649–655

    PubMed  CAS  Google Scholar 

  89. Tokushige K, Takakura M, Tsuchiya-Matsushita N, Taniai M, Hashimoto E, Shiratori K (2007) Influence of TNF gene polymorphisms in Japanese patients with NASH and simple steatosis. J Hepatol 46:1104–1110

    PubMed  CAS  Google Scholar 

  90. Valenti L, Fracanzani AL, Dongiovanni P, Santorelli G, Branchi A, Taioli E, Fiorelli G, Fargion S (2002) Tumor necrosis factor alpha promoter polymorphisms and insulin resistance in nonalcoholic fatty liver disease. Gastroenterology 122:274–280

    PubMed  CAS  Google Scholar 

  91. Hu ZW, Luo HB, Xu YM, Guo JW, Deng XL, Tong YW, Tang X (2009) Tumor necrosis factor-alpha gene promoter polymorphisms in Chinese patients with nonalcoholic fatty liver diseases. Acta Gastroenterol Belg 72:215–221

    PubMed  Google Scholar 

  92. Sookoian SC, González C, Pirola CJ (2005) Meta-analysis on the G-308A tumor necrosis factor alpha gene variant and phenotypes association with metabolic syndrome. Obes Res 13:2122–2131

    PubMed  Google Scholar 

  93. Choi JW, Song JS, Pai SH (2004) Associations of serum TRAIL concentrations, anthropometric variables, and serum lipid parameters in healthy adults. Ann Clin Lab Sci 34:400–404

    PubMed  CAS  Google Scholar 

  94. Yan X, Xu L, Qi J, Liang X, Ma C, Guo C, Zhang L, Sun W, Zhang J, Wei X et al (2009) sTRAIL levels and TRAIL gene polymorphisms in Chinese patients with fatty liver disease. Immunogenetics 61:551–556

    PubMed  CAS  Google Scholar 

  95. Pereira FA, Pinheiro da Silva NN, Rodart IF, Carmo TM, Lemaire DC, Reis MG (2008) Association of TGF-beta1 codon 25 (G915C) polymorphism with hepatitis C virus infection. J Med Virol 80:58–64

    PubMed  CAS  Google Scholar 

  96. Inoue I, Nakajima T, Williams CS, Quackenbush J, Puryear R, Powers M, Cheng T, Ludwig EH, Sharma AM, Hata A (1997) A nucleotide substitution in the promoter of human angiotensinogen is associated with essential hypertension and affects basal transcription in vitro. J Clin Invest 99:1786–1797

    PubMed  CAS  Google Scholar 

  97. Dixon JB, Bhathal PS, O’Brien PE (2001) Non-alcoholic fatty liver disease: predictors of nonalcoholic steatohepatitis and liver fibrosis in the severely obese. Gastroenterology 121:91–100

    PubMed  CAS  Google Scholar 

  98. Yoshiji H, Kuriyama S, Yoshii J, Ikenaka Y, Noguchi R, Nakatani T, Tsujinoue H, Fukui H (2001) Angiotensin-II type 1 receptor interaction is a major regulator for liver fibrosis development in rats. Hepatology 34:745–750

    PubMed  CAS  Google Scholar 

  99. Kojima S, Hayashi S, Shimokado K, Suzuki Y, Shimada J, Crippa MP, Friedman SL (2000) Transcriptional activation of urokinase by the Kruppel like factor Zf9/COPEB activates latent TGF-beta1 in vascular endothelial cells. Blood 95:1309–1316

    PubMed  CAS  Google Scholar 

  100. Ratziu V, Lalazar A, Wong L, Dang Q, Collins C, Shaulian E, Jensen S, Friedman SL (1998) Zf9, a Kruppel-like transcription factor up-regulated in vivo during early hepatic fibrosis. Proc Natl Acad Sci USA 95:9500–9505

    PubMed  CAS  Google Scholar 

  101. Kim Y, Ratziu V, Choi SG, Lalazar A, Theiss G, Dang Q, Kim SJ, Friedman SL (1998) Transcriptional activation of transforming growth factor beta1 and its receptors by the Kruppel-like factor Zf9/core promoter-binding protein and Sp1. Potential mechanisms for autocrine fibrogenesis in response to injury. J Biol Chem 273:33750–33758

    PubMed  CAS  Google Scholar 

  102. Kremer-Tal S, Narla G, Chen Y, Hod E, DiFeo A, Yea S, Lee JS, Schwartz M, Thung SN, Fiel IM et al (2007) Downregulation of KLF6 is an early event in hepatocarcinogenesis, and stimulates proliferation while reducing differentiation. J Hepatol 46:645–654

    PubMed  CAS  Google Scholar 

  103. Miele L, Beale G, Patman G, Nobili V, Leathart J, Grieco A, Abate M, Friedman SL, Narla G, Bugianesi E et al (2008) The Kruppel-like factor 6 genotype is associated with fibrosis in nonalcoholic fatty liver disease. Gastroenterology 135:282–291

    PubMed  CAS  Google Scholar 

  104. Speliotes EK, Yerges-Armstrong LM, Wu J, Hernaez R, Kim LJ, Palmer CD, Gudnason V, Eiriksdottir G, Garcia ME, Launer LJ, et al (2011) Genome-wide association analysis identifies variants associated with nonalcoholic fatty liver disease that have distinct effects on metabolic traits. PLoS Genet. doi:10.1371/journal.pgen.1001324

Download references

Acknowledgments

We acknowledge the financial support from the Ministry of Health (CUP, G71J07000020001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucia Malaguarnera.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Di Rosa, M., Malaguarnera, L. Genetic variants in candidate genes influencing NAFLD progression. J Mol Med 90, 105–118 (2012). https://doi.org/10.1007/s00109-011-0803-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-011-0803-x

Keywords

Navigation