Skip to main content
Log in

A peptide binding to dimerized translationally controlled tumor protein modulates allergic reactions

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Translationally controlled tumor protein (TCTP) is believed to be involved in a variety of inflammatory processes: secretion of histamine and cytokines such as IL-4, IL-8, IL-13, and granulocyte/macrophage colony-stimulating factor; chemoattraction for eosinophils; augmentation of B cell proliferation; and immunoglobulin production, thereby potentially regulating allergic phenomena. In a previous study, we showed that the cytokine-releasing activity of extracellular TCTP is generated only when TCTP dimerizes via the intermolecular disulfide bond of NH2-terminal truncated TCTP implying that the dimerized TCTP (dTCTP) promotes the inflammatory phenomena. Modulation of dTCTP, thus, may offer a strategy for the treatment of chronic allergic diseases. In this study, we searched for dTCTP-binding peptides (dTBPs) by screening a phage-displayed 7-mer peptide library. We identified one peptide in the library, designated as dTBP2, which showed higher affinity to dTCTP than to full-length, monomeric TCTP. dTBP2 inhibited the induction of IL-8 by dTCTP from BEAS-2B cells. dTBP2 also reduced symptom score and eosinophil infiltration in a mouse rhinitis model. This study suggests that the dTBP2 binding to dTCTP modulates the release of inflammatory mediators of dTCTP. This result may provide a rational strategy for the treatment of allergic diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Calderon MA, Lozewicz S, Prior A, Jordan S, Trigg CJ, Davies RJ (1994) Lymphocyte infiltration and thickness of the nasal mucous membrane in perennial and seasonal allergic rhinitis. J Allergy Clin Immunol 93:635–643

    Article  PubMed  CAS  Google Scholar 

  2. Borish L, Rosenwasser LJ (1996) Update on cytokines. J Allergy Clin Immunol 97:719–733, quiz 734

    Article  PubMed  CAS  Google Scholar 

  3. Bascom R, Wachs M, Naclerio RM, Pipkorn U, Galli SJ, Lichtenstein LM (1988) Basophil influx occurs after nasal antigen challenge: effects of topical corticosteroid pretreatment. J Allergy Clin Immunol 81:580–589

    Article  PubMed  CAS  Google Scholar 

  4. Bochner BS, Schleimer RP (1994) The role of adhesion molecules in human eosinophil and basophil recruitment. J Allergy Clin Immunol 94:427–438, quiz 439

    Article  PubMed  CAS  Google Scholar 

  5. Borish LC, Nelson HS, Corren J, Bensch G, Busse WW, Whitmore JB, Agosti JM (2001) Efficacy of soluble IL-4 receptor for the treatment of adults with asthma. J Allergy Clin Immunol 107:963–970

    Article  PubMed  CAS  Google Scholar 

  6. Sun Q, Jones K, McClure B, Cambareri B, Zacharakis B, Iversen PO, Stomski F, Woodcock JM, Bagley CJ, D’Andrea R et al (1999) Simultaneous antagonism of interleukin-5, granulocyte-macrophage colony-stimulating factor, and interleukin-3 stimulation of human eosinophils by targeting the common cytokine binding site of their receptors. Blood 94:1943–1951

    PubMed  CAS  Google Scholar 

  7. Lack G, Bradley KL, Hamelmann E, Renz H, Loader J, Leung DY, Larsen G, Gelfand EW (1996) Nebulized IFN-gamma inhibits the development of secondary allergic responses in mice. J Immunol 157:1432–1439

    PubMed  CAS  Google Scholar 

  8. Schwarze J, Hamelmann E, Cieslewicz G, Tomkinson A, Joetham A, Bradley K, Gelfand EW (1998) Local treatment with IL-12 is an effective inhibitor of airway hyperresponsiveness and lung eosinophilia after airway challenge in sensitized mice. J Allergy Clin Immunol 102:86–93

    Article  PubMed  CAS  Google Scholar 

  9. Shields RL, Whether WR, Zioncheck K, O’Connell L, Fendly B, Presta LG, Thomas D, Saban R, Jardieu P (1995) Inhibition of allergic reactions with antibodies to IgE. Int Arch Allergy Immunol 107:308–312

    Article  PubMed  CAS  Google Scholar 

  10. Corne J, Djukanovic R, Thomas L, Warner J, Botta L, Grandordy B, Gygax D, Heusser C, Patalano F, Richardson W et al (1997) The effect of intravenous administration of a chimeric anti-IgE antibody on serum IgE levels in atopic subjects: efficacy, safety, and pharmacokinetics. J Clin Invest 99:879–887

    Article  PubMed  CAS  Google Scholar 

  11. Ciprandi G, Tosca MA, Cosentino C, Riccio AM, Passalacqua G, Canonica GW (2003) Effects of fexofenadine and other antihistamines on components of the allergic response: adhesion molecules. J Allergy Clin Immunol 112:S78–S82

    Article  PubMed  CAS  Google Scholar 

  12. MacDonald SM, Rafnar T, Langdon J, Lichtenstein LM (1995) Molecular identification of an IgE-dependent histamine-releasing factor. Science 269:688–690

    Article  PubMed  CAS  Google Scholar 

  13. Schroeder JT, Lichtenstein LM, MacDonald SM (1997) Recombinant histamine-releasing factor enhances IgE-dependent IL-4 and IL-13 secretion by human basophils. J Immunol 159:447–452

    PubMed  CAS  Google Scholar 

  14. Bheekha-Escura R, MacGlashan DW, Langdon JM, MacDonald SM (2000) Human recombinant histamine-releasing factor activates human eosinophils and the eosinophilic cell line, AML14-3D10. Blood 96:2191–2198

    PubMed  CAS  Google Scholar 

  15. Yoneda K, Rokutan K, Nakamura Y, Yanagawa H, Kondo-Teshima S, Sone S (2004) Stimulation of human bronchial epithelial cells by IgE-dependent histamine-releasing factor. Am J Physiol Lung Cell Mol Physiol 286:L174–L181

    Article  PubMed  CAS  Google Scholar 

  16. Kang HS, Lee MJ, Song H, Han SH, Kim YM, Im JY, Choi I (2001) Molecular identification of IgE-dependent histamine-releasing factor as a B cell growth factor. J Immunol 166:6545–6554

    PubMed  CAS  Google Scholar 

  17. Kim M, Min HJ, Won HY, Park H, Lee JC, Park HW, Chung J, Hwang ES, Lee K (2009) Dimerization of translationally controlled tumor protein is essential for its cytokine-like activity. PLoS ONE 4:e6464

    Article  PubMed  Google Scholar 

  18. Teshima S, Rokutan K, Nikawa T, Kishi K (1998) Macrophage colony-stimulating factor stimulates synthesis and secretion of a mouse homolog of a human IgE-dependent histamine-releasing factor by macrophages in vitro and in vivo. J Immunol 161:6356–6366

    PubMed  CAS  Google Scholar 

  19. Gnanasekar M, Rao KV, Chen L, Narayanan RB, Geetha M, Scott AL, Ramaswamy K, Kaliraj P (2002) Molecular characterization of a calcium binding translationally controlled tumor protein homologue from the filarial parasites Brugia malayi and Wuchereria bancrofti. Mol Biochem Parasitol 121:107–118

    Article  PubMed  CAS  Google Scholar 

  20. Li F, Zhang D, Fujise K (2001) Characterization of fortilin, a novel antiapoptotic protein. J Biol Chem 276:47542–47549

    Article  PubMed  CAS  Google Scholar 

  21. Gachet Y, Tournier S, Lee M, Lazaris-Karatzas A, Poulton T, Bommer UA (1999) The growth-related, translationally controlled protein P23 has properties of a tubulin binding protein and associates transiently with microtubules during the cell cycle. J Cell Sci 112(Pt 8):1257–1271

    PubMed  CAS  Google Scholar 

  22. Kim M, Jung Y, Lee K, Kim C (2000) Identification of the calcium binding sites in translationally controlled tumor protein. Arch Pharm Res 23:633–636

    Article  PubMed  CAS  Google Scholar 

  23. Bommer UA, Thiele BJ (2004) The translationally controlled tumour protein (TCTP). Int J Biochem Cell Biol 36:379–385

    Article  PubMed  CAS  Google Scholar 

  24. Norzila MZ, Fakes K, Henry RL, Simpson J, Gibson PG (2000) Interleukin-8 secretion and neutrophil recruitment accompanies induced sputum eosinophil activation in children with acute asthma. Am J Respir Crit Care Med 161:769–774

    PubMed  CAS  Google Scholar 

  25. Moqbel R, Levi-Schaffer F, Kay AB (1994) Cytokine generation by eosinophils. J Allergy Clin Immunol 94:1183–1188

    Article  PubMed  CAS  Google Scholar 

  26. Clutterbuck EJ, Hirst EM, Sanderson CJ (1989) Human interleukin-5 (IL-5) regulates the production of eosinophils in human bone marrow cultures: comparison and interaction with IL-1, IL-3, IL-6, and GMCSF. Blood 73:1504–1512

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant of the Korea Healthcare technology R&D Project, Ministry for Health, Welfare & Family Affairs (A090030), Mid-career Research Program through NRF grant funded by the MEST (R01-2007-000-20263-0), Seoul R&BD Program (ST090801), and the NCRC program of MOST/KOSEF (R15-2006-020) to Kyunglim Lee, Ewha Womans University (2010) to Miyoung Kim, and William F. Milton Fund to Guido Guidotti.

Disclosures

M. Kim and K. Lee have submitted an application for a patent on the use of the peptides to treat allergic diseases.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyunglim Lee.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 31 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, M., Chung, J., Lee, C. et al. A peptide binding to dimerized translationally controlled tumor protein modulates allergic reactions. J Mol Med 89, 603–610 (2011). https://doi.org/10.1007/s00109-011-0740-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-011-0740-8

Keywords

Navigation