Skip to main content

Advertisement

Log in

Ceramide, membrane rafts and infections

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Distinct domains in the cell membrane, termed rafts, emerge as central for the infection of mammalian cells by many pathogens. Rafts consist of sphingolipids and cholesterol that interact strongly, and thus spontaneously separate from other phospholipids in the cell membrane. Recent studies suggest that at least some pathogens activate the acid sphingomyelinase that releases ceramide in membrane rafts. The generation of ceramide transforms small rafts into a signaling unit and results in the fusion of small rafts to large platforms. Membrane rafts and ceramide-enriched membrane platforms have been shown to mediate internalization of bacteria, viruses and parasites into the host cell, to initiate apoptosis of the host cell upon infection and to regulate the release of cytokines from infected mammalian cells. Furthermore, rafts and ceramide have been implicated in the intracellular trafficking of phagosomes and in the budding of viruses from infected cells. The molecular function of rafts and ceramide-enriched membrane platforms seems to be the re-organization of receptor and intracellular signaling molecules in the cell membrane permitting the interaction of the pathogen with the cell. This suggests that rafts and ceramide-enriched membrane platforms function as central structures involved in the infection of mammalian cells by pathogens and as targets for the development of anti-infective drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Singer SJ, Nicolson GL (1972) The fluid mosaic model of the structure of cell membranes. Science 175:720–731

    CAS  PubMed  Google Scholar 

  2. Brown DA, London E (1998) Structure and origin of ordered lipid domains in biological membranes. J Membr Biol 164:103–114

    CAS  PubMed  Google Scholar 

  3. Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387:569–572

    CAS  PubMed  Google Scholar 

  4. Anderson RGW, Jacobson K (2002) A role for lipid shells in targeting proteins to caveolae, rafts and other lipid domains. Science 296:1821–1825

    Article  CAS  PubMed  Google Scholar 

  5. Kolesnick RN, Goni FM, Alonso A (2000) Compartmentalization of ceramide signaling: physical foundations and biological effects. J Cell Physiol 184:285–300

    Article  CAS  PubMed  Google Scholar 

  6. Grassmé H, Jekle A, Riehle A, Schwarz H, Berger J, Sandhoff K, Kolesnick R, Gulbins E (2001) CD95 signaling via ceramide rich membrane rafts. J Biol Chem 276:20589–20596

    Article  PubMed  Google Scholar 

  7. Grassmé H, Jendrossek V, Bock J, Riehle A, Gulbins E (2002) Ceramide-rich membrane rafts mediate CD40 clustering. J Immunol 168:298–307

    PubMed  Google Scholar 

  8. Grassmé H, Jendrossek V, Riehle A, von Kürthy G, Berger J, Schwarz H, Weller M, Kolesnick R, Gulbins E (2003) Host defense against P. aeruginosa requires ceramide-rich membrane rafts. Nat Med 9:322–330

    Article  PubMed  Google Scholar 

  9. Gulbins E, Kolesnick RN (2003) Raft ceramide in molecular medicine. Oncogene 22:7070–7077

    Article  CAS  PubMed  Google Scholar 

  10. Cremesti A, Paris F, Grassmé H, Holler N, Tschopp J, Fuks Z, Gulbins E, Kolesnick R (2001) Ceramide enables Fas to cap and kill. J Biol Chem 276:23954–23961

    Article  CAS  PubMed  Google Scholar 

  11. Bock J, Gulbins E (2002) The transmembranous domain of CD40 determines CD40 partitioning into lipid rafts. FEBS Lett 534:169–174

    Article  Google Scholar 

  12. Garcia-Barros M, Paris F, Cordon-Cardo C, Lyden D, Rafii S, Haimovitz-Friedman A, Fuks Z, Kolesnick R (2003) Tumor response to radiotherapy regulated by endothelial cell apoptosis. Science 300:1155–1159

    Article  CAS  PubMed  Google Scholar 

  13. Zhang Y, Mattjus P, Schmid PC, Dong Z, Zhong S, Ma WY, Brown RE, Bode AM, Schmid HH, Dong Z (2001) Involvement of the acid sphingomyelinase pathway in UVA-induced apoptosis. J Biol Chem 276:11775–11782

    Article  CAS  PubMed  Google Scholar 

  14. Morita Y, Perez GI, Paris F, Miranda SR, Ehleiter D, Haimovitz-Friedman A, Fuks Z, Xie Z, Reed JC, Schuchman EH, Kolesnick RN, Tilly JL (2000) Oocyte apoptosis is suppressed by disruption of the acid sphingomyelinase gene or by sphingosine-1- phosphate therapy. Nat Med 6:1109–1114

    Article  CAS  PubMed  Google Scholar 

  15. Fanzo JC, Lynch MP, Phee H, Hyer M, Cremesti A, Grassmé H, Norris JS, Coggeshall KM, Rueda BR, Pernis AB, Kolesnick R, Gulbins E (2003) CD95 rapidly clusters in cells of diverse origins. Cancer Biol Ther 2:392–395

    CAS  PubMed  Google Scholar 

  16. Hueber AO, Bernard AM, Herincs Z, Couzinet A, He HT (2002) An essential role for membrane rafts in the initiation of Fas/CD95-triggered cell death in mouse thymocytes. EMBO Rep 3:190–196

    Article  CAS  PubMed  Google Scholar 

  17. Holopainen JM, Subramanian M, Kinnunen PK (1998) Sphingomyelinase induces lipid microdomain formation in a fluid phosphatidycholine/sphingomyelin membrane. Biochemistry 37:17562–17570

    Article  CAS  PubMed  Google Scholar 

  18. Nurminen TA, Holopainen JM, Zhao H, Kinnunen PK (2002) Observation of topical catalysis by sphingomyelinase coupled to microspheres. J Am Chem Soc 124:12129–12134

    Article  CAS  PubMed  Google Scholar 

  19. Huang HW, Goldberg EM, Zidovetzki R (1999) Ceramides modulate protein kinase C activity and perturb the structure of phosphatidylcholine/phosphatidylserine bilayers. Biophys J 77:1489–1497

    CAS  PubMed  Google Scholar 

  20. Veiga MP, Arrondon JL, Goni FM, Alonso A (1999) Ceramides in phospholipid membranes: effects on bilayer stability and transition to nonlamellar phases. Biophys J 76:342–350

    CAS  PubMed  Google Scholar 

  21. Grotenhuis E ten, Demel RA, Ponec M, Boer DR, van Miltenburg JC, Bouwstra JA (1996) Phase behavior of stratum corneum lipids in mixed Langmuir-Blodgett monolayers. Biophys J 71:1389–1399

    PubMed  Google Scholar 

  22. Dietrich C, Bagatolli LA, Volovyk ZN, Thompson NL, Levi M, Jacobsson K, Gratton E (2001) Lipid rafts reconstituted in model membranes. Biophys J 80:1417–1428

    CAS  PubMed  Google Scholar 

  23. Grassmé H, Gulbins E, Brenner B, Ferlinz K, Sandhoff K, Harzer K, Lang F, Meyer TF (1997) Acidic sphingomyelinase mediates entry of N. gonorrhoeae into nonphagocytic cells. Cell 91:605–615

    PubMed  Google Scholar 

  24. Hauck CR, Grassmé H, Bock J, Jendrossek V, Ferlinz K, Meyer TF, Gulbins E (2000) Acid sphingomyelinase is involved in CEACAM receptor-mediated phagocytosis of N. gonorrhoeae. FEBS Lett 478:260–266

    Article  CAS  PubMed  Google Scholar 

  25. Esen M, Schreiner B, Jendrossek V, Lang F, Fassbender K, Grassmé H, Gulbins E (2001) Mechanisms of Staphylococcus aureus induced apoptosis of human endothelial cells. Apoptosis 6:441–445

    Article  PubMed  Google Scholar 

  26. Shin JS, Gao Z, Abraham SN (2000) Involvement of cellular caveolae in bacterial entry into mast cells. Science 289:785–787

    Article  CAS  PubMed  Google Scholar 

  27. Baorto DM, Gao Z, Malaviya R, Dustin M, van der Merwe A, Lublin DM, Abraham SN (1997) Survival of FimH-expressing enterobacteria in macrophages relies on glycolipid traffic. Nature 389:636–639

    Article  CAS  PubMed  Google Scholar 

  28. Zobiack N, Rescher U, Laarmann S, Michgehl S, Schmidt MA, Gerke U (2002) Cell-surface attachment of pedestal-forming enteropathogenic E. coli induces a clustering of raft components and a recruitment of annexin. J Cell Sci 115:91–98

    CAS  PubMed  Google Scholar 

  29. Cannon CL, Kowalski MP, Stopak KS, Pier GB (2003) Pseudomonas aeruginosa-induced apoptosis is defective in respiratory epithelial cells expressing mutant cystic fibrosis transmembrane conductance regulator. Am J Respir Cell Mol Biol 229:188–197

    Article  Google Scholar 

  30. Anes E, Kühnel MP, Bos E, Moniz-Pereira J, Habermann A, Griffiths G (2003) Selected lipids activate phagosome actin assembly and maturation resulting in killing of pathogenic mycobacteria. Nat Cell Biol 5:793–802

    Article  CAS  PubMed  Google Scholar 

  31. Bini L, Pacini S, Liberatori S, Valensin S, Pellegrini M, Raggiaschi R, Pallini V, Baldar CT (2003) Extensive temporally regulated reorganization of the lipid raft proteome following T-cell antigen receptor triggering. Biochem J 369:301–309

    Article  CAS  PubMed  Google Scholar 

  32. Scheel-Toellner D, Wang K, Sing R, Majeed S, Raza K, Curnow SJ, Salmon M, Lord JM (2002) The death-inducing signalling complex is recruited to lipid rafts in Fas-induced apoptosis. Biochem Biophys Res Commun 297:876–879

    Article  CAS  PubMed  Google Scholar 

  33. Grassmé H, Cremesti A, Kolesnick R, Gulbins E (2003) Ceramide-mediated clustering is required for CD95-DISC formation. Oncogene 22:5457–5470

    Article  PubMed  Google Scholar 

  34. Pier GB, Grout M, Zaidi TS, Olsen JC, Johnson LG, Yankaskas JR, Goldberg JB (1996) Role of mutant CFTR in hypersusceptibility of cystic fibrosis patients to lung infections. Science 271:64–67

    CAS  PubMed  Google Scholar 

  35. Grassmé H, Kirschnek S, Riethmueller J, Riehle A, von Kürthy G, Lang F, Weller M, Gulbins E (2000) Host defense to Pseudomonas aeruginosa requires CD95/CD95 ligand interaction on epithelial cells. Science 290:527–530

    Article  PubMed  Google Scholar 

  36. Simons K, Ehehalt R (2002) Cholesterol, lipid rafts and disease. J Clin Invest 110:597–603

    Article  CAS  PubMed  Google Scholar 

  37. Jan JT, Chatterjee S, Griffin DE (2000) Sindbis virus entry into cells triggers apoptosis by activating sphingomyelinase, leading to the release of ceramide. J Virol 74:6425–6432

    Article  CAS  PubMed  Google Scholar 

  38. Hanada K, Palacpac NM, Magistrado PA, Kurokawa K, Rai G, Sakata D, Hara T, Horii T, Nishijima M, Mitamura T (2002) Plasmodium falciparum phospholipase C hydrolyzing sphingomyelin and lysocholinephospholipids is a possible target for malaria chemotherapy. J Exp Med 195:23–34

    Article  CAS  PubMed  Google Scholar 

  39. Graham DR, Chertova E, Hilburn JM, Arthur LO, Hildreth JE (2003) Cholesterol depletion of human immunodeficiency virus type 1 and simian immunodeficiency virus with beta-cyclodextrin inactivates and permeabilizes the virions: evidence for virion-associated lipid rafts. J Virol 77:8237–8248

    Article  CAS  PubMed  Google Scholar 

  40. Walmsley AR, Zeng F, Hooper NM (2003) The N-terminal region of the prion protein ectodomain contains a lipid rafts targeting determinant. J Biol Chem 278:37241–37248

    Article  CAS  PubMed  Google Scholar 

  41. Tarboulos AM, Scott M, Semenov A, Avraham D, Laszlo L, Prusiner SB (1995). Cholesterol depletion and modification of COOH-terminal targeting sequence of the prion protein inhibit formation of the scrapie isoform. J Cell Biol 129:121–132

    PubMed  Google Scholar 

  42. Baron GS, Wehrly K., Dorward DW, Chesebro B, Caughey B (2002) Conversion of raft associated prion protein to the protease-resistant state requires insertion of PrP-res [PrP(Sc)] into contiguous membranes. EMBO J 21:1031–1040

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Studies described in this review were supported by DFG grant Gu 335/10-2/3 to E.G. and the IFORES program to H.G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erich Gulbins.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gulbins, E., Dreschers, S., Wilker, B. et al. Ceramide, membrane rafts and infections. J Mol Med 82, 357–363 (2004). https://doi.org/10.1007/s00109-004-0539-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-004-0539-y

Keywords

Navigation