Skip to main content

Advertisement

Log in

Prion protein conversion in vitro

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

The infectious agents of prion diseases are composed primarily of an infectious protein designated PrPSc. In cells infected with prions, a host glycoprotein termed PrPC undergoes induced conformational change to PrPSc, but the molecular mechanism underlying this structural transition occurs remains unknown. The prion-seeded conversion of PrPC to protease-resistant PrPSc-like molecules (PrPres) has been studied both in crude and purified in vitro systems in order to investigate the mechanism of protein conformational change in prion disease. Conversion of purified PrPC into PrPres is specific with respect to species-dependent and polymorphic differences in PrP sequence as well as biophysical variations between prion strains, recapitulating the specificity of prion propagation in vitro. The protein misfolding cyclic amplification (PMCA) technique, which utilizes crude brain homogenates, produces much higher yields of PrPres than conversion of purified PrP molecules, suggesting that additional cellular factors may stimulate PrPres formation. In a modified version of the PMCA technique, PrPres from diluted prion-infected brain homogenate can be amplified > ten-fold when mixed with normal brain homogenate without sonication or the anionic detergent sodium dodecyl sulfate (SDS). Under these conditions, PrPres amplification in vitro depends upon both time and temperature, has a neutral pH optimum, and does not require divalent cations. In vitro PrPres amplification is inhibited by both reversible and irreversible thiol blockers, indicating that the conformational change from PrPC to PrPres requires a thiol-containing factor. Stoichiometric transformation of PrPC to PrPres in vitro also requires specific RNA molecules, suggesting that host-encoded catalytic RNA molecules may play a role in the pathogenesis of prion disease. Heparan sulfate stimulates conversion of purified PrPC into PrPres in vitro, and heparan sulfate proteoglycan molecules are required for efficient PrPres formation in prion-infected cells. Future studies using in vitro PrPres conversion and amplification assays promise to provide new mechanistic insights about the PrP conversion process, and to generate clinically useful tools.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a, b
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Prusiner SB (1982) Novel proteinaceous infectious particles cause scrapie. Science 216:136–144

    CAS  PubMed  Google Scholar 

  2. Prusiner SB (1999) Prion biology and diseases. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y., p 794

  3. Pan KM, Baldwin M, Nguyen J, Gasset M, Serban A, Groth D, Mehlhorn I, Huang Z, Fletterick RJ, Cohen FE, et al (1993) Conversion of alpha-helices into beta-sheets features in the formation of the scrapie prion proteins. Proc Natl Acad Sci USA 90:10962–10966

    CAS  PubMed  Google Scholar 

  4. Safar J, Roller PP, Gajdusek DC, Gibbs CJ Jr (1993) Conformational transitions, dissociation, and unfolding of scrapie amyloid (prion) protein. J Biol Chem 268:20276–20284

    CAS  PubMed  Google Scholar 

  5. Caughey BW, Dong A, Bhat KS, Ernst D, Hayes SF, Caughey WS (1991) Secondary structure analysis of the scrapie-associated protein PrP27-30 in water by infrared spectroscopy. Biochemistry 30:7672–7680

    CAS  PubMed  Google Scholar 

  6. Stahl N, Borchelt DR, Hsiao K, Prusiner SB (1987) Scrapie prion protein contains a phosphatidylinositol glycolipid. Cell 51:229–240

    PubMed  Google Scholar 

  7. Turk E, Teplow DB, Hood LE, Prusiner SB (1988) Purification and properties of the cellular and scrapie hamster prion proteins. Eur J Biochem 176:21–30

    CAS  PubMed  Google Scholar 

  8. Kocisko DA, Come JH, Priola SA, Chesebro B, Raymond GJ, Lansbury PT, Caughey B (1994) Cell-free formation of protease-resistant prion protein. Nature 370:471–474

    PubMed  Google Scholar 

  9. Kocisko DA, Priola SA, Raymond GJ, Chesebro B, Lansbury PT Jr, Caughey B (1995) Species specificity in the cell-free conversion of prion protein to protease-resistant forms: a model for the scrapie species barrier. Proc Natl Acad Sci USA 92:3923–3927

    CAS  PubMed  Google Scholar 

  10. Bessen RA, Kocisko DA, Raymond GJ, Nandan S, Lansbury PT, Caughey B (1995) Non-genetic propagation of strain-specific properties of scrapie prion protein. Nature 375:698–700

    Article  CAS  PubMed  Google Scholar 

  11. Bossers A, Belt P, Raymond GJ, Caughey B, de Vries R, Smits MA (1997) Scrapie susceptibility-linked polymorphisms modulate the in vitro conversion of sheep prion protein to protease-resistant forms. Proc Natl Acad Sci USA 94:4931–4936

    Article  CAS  PubMed  Google Scholar 

  12. Caughey B, Raymond LD, Raymond GJ, Maxson L, Silveira J, Baron GS (2003) Inhibition of protease-resistant prion protein accumulation in vitro by curcumin. J Virol 77:5499–5502

    Article  CAS  PubMed  Google Scholar 

  13. Priola SA, Raines A, Caughey WS (2000) Porphyrin and phthalocyanine antiscrapie compounds. Science 287:1503–1506

    Article  CAS  PubMed  Google Scholar 

  14. Doh-Ura K, Iwaki T, Caughey B (2000) Lysosomotropic agents and cysteine protease inhibitors inhibit scrapie-associated prion protein accumulation. J Virol 74:4894–4897

    Article  CAS  PubMed  Google Scholar 

  15. Demaimay R, Chesebro B, Caughey B (2000) Inhibition of formation of protease-resistant prion protein by Trypan Blue, Sirius Red and other Congo Red analogs. Arch Virol Suppl 16:277–283

    PubMed  Google Scholar 

  16. Baron GS, Wehrly K, Dorward DW, Chesebro B, Caughey B (2002) Conversion of raft associated prion protein to the protease-resistant state requires insertion of PrPres [PrP(Sc)] into contiguous membranes. EMBO J 21:1031–1040

    Article  CAS  PubMed  Google Scholar 

  17. Saborio GP, Permanne B, Soto C (2001) Sensitive detection of pathological prion protein by cyclic amplification of protein misfolding. Nature 411:810–813

    PubMed  Google Scholar 

  18. Gabizon R, McKinley MP, Prusiner SB (1987) Purified prion proteins and scrapie infectivity copartition into liposomes. Proc Natl Acad Sci USA 84:4017–4021

    CAS  PubMed  Google Scholar 

  19. Bellinger-Kawahara C, Diener TO, McKinley MP, Groth DF, Smith DR, Prusiner SB (1987) Purified scrapie prions resist inactivation by procedures that hydrolyze, modify, or shear nucleic acids. Virology 160:271–274

    CAS  PubMed  Google Scholar 

  20. Riesner D, Kellings K, Post K, Wille H, Serban H, Groth D, Baldwin MA, Prusiner SB (1996) Disruption of prion rods generates 10 nm spherical particles having high alpha-helical content and lacking scrapie infectivity. J Virol 70:1714–1722

    CAS  PubMed  Google Scholar 

  21. Lucassen R, Nishina K, Supattapone S (2003) In vitro amplification of protease-resistant prion protein requires free sulfhydryl groups. Biochemistry 42:4127–4135

    Article  CAS  PubMed  Google Scholar 

  22. Vey M, Pilkuhn S, Wille H, Nixon R, DeArmond SJ, Smart EJ, Anderson RG, Taraboulos A, Prusiner SB (1996) Subcellular colocalization of the cellular and scrapie prion proteins in caveolae-like membranous domains. Proc Natl Acad Sci USA 93:14945–14949

    Article  CAS  PubMed  Google Scholar 

  23. Gabus C, Derrington E, Leblanc P, Chnaiderman J, Dormont D, Swietnicki W, Morillas M, Surewicz WK, Marc D, Nandi P, Darlix JL (2001) The prion protein has RNA binding and chaperoning properties characteristic of nucleocapsid protein NCP7 of HIV-1. J Biol Chem 276:19301–19309

    Article  CAS  PubMed  Google Scholar 

  24. McKenzie D, Bartz J, Mirwald J, Olander D, Marsh R, Aiken J (1998) Reversibility of scrapie inactivation is enhanced by copper. J Biol Chem 273:25545–25547

    CAS  PubMed  Google Scholar 

  25. Wadsworth JD, Hill AF, Joiner S, Jackson GS, Clarke AR, Collinge J (1999) Strain-specific prion-protein conformation determined by metal ions. Nat Cell Biol 1:55–59

    CAS  PubMed  Google Scholar 

  26. Pattison IH (1965) Experiments with scrapie with special reference to the nature of the agent and the pathology of the disease. In: Gajdusek DC, Gibbs CJ Jr, Alpers MP (eds) Slow, latent and temperate virus infections, NINDB Monograph 2. US Government Printing, Washington, D.C., pp 249–257

  27. Pattison IH, Jones KM (1968) Modification of a strain of mouse-adapted scrapie by passage through rats. Res Vet Sci 9:408–410

    CAS  PubMed  Google Scholar 

  28. Scott M, Groth D, Foster D, Torchia M, Yang SL, DeArmond SJ, Prusiner SB (1993) Propagation of prions with artificial properties in transgenic mice expressing chimeric PrP genes. Cell 73:979–988

    CAS  PubMed  Google Scholar 

  29. Scott M, Foster D, Mirenda C, Serban D, Coufal F, Walchli M, Torchia M, Groth D, Carlson G, DeArmond SJ, et al (1989) Transgenic mice expressing hamster prion protein produce species-specific scrapie infectivity and amyloid plaques. Cell 59:847–857

    PubMed  Google Scholar 

  30. Lowenstein DH, Butler DA, Westaway D, McKinley MP, DeArmond SJ, Prusiner SB (1990) Three hamster species with different scrapie incubation times and neuropathological features encode distinct prion proteins. Mol Cell Biol 10:1153–1163

    CAS  PubMed  Google Scholar 

  31. Dickinson AG, Meikle VM, Fraser H (1968) Identification of a gene which controls the incubation period of some strains of scrapie agent in mice. J Comp Pathol 78:293–299

    PubMed  Google Scholar 

  32. Kimberlin RH (1990) Scrapie and possible relationships with viroids. Semin Virol 1:153–162

    Google Scholar 

  33. Bessen RA, Marsh RF (1994) Distinct PrP properties suggest the molecular basis of strain variation in transmissible mink encephalopathy. J Virol 68:7859–7868

    CAS  PubMed  Google Scholar 

  34. Bessen RA, Marsh RF (1992) Identification of two biologically distinct strains of transmissible mink encephalopathy in hamsters. J Gen Virol 73:329–334

    PubMed  Google Scholar 

  35. Bessen RA, Marsh RF (1992) Biochemical and physical properties of the prion protein from two strains of the transmissible mink encephalopathy agent. J Virol 66:2096–2101

    CAS  PubMed  Google Scholar 

  36. Herrmann LM, Caughey B (1998) The importance of the disulfide bond in prion protein conversion. Neuroreport 9:2457–2461

    CAS  PubMed  Google Scholar 

  37. Welker E, Wedemeyer WJ, Scheraga HA (2001) A role for intermolecular disulfide bonds in prion diseases? Proc Natl Acad Sci USA 98:4334–4336

    Article  CAS  PubMed  Google Scholar 

  38. Tompa P, Tusnady GE, Friedrich P, Simon I (2002) The role of dimerization in prion replication. Biophys J 82:1711–1718

    CAS  PubMed  Google Scholar 

  39. Feughelman M, Willis BK (2000) Thiol-disulfide interchange a potential key to conformational change associated with amyloid fibril formation. J Theor Biol 206:313–315

    Article  CAS  PubMed  Google Scholar 

  40. Mehlhorn I, Groth D, Stockel J, Moffat B, Reilly D, Yansura D, Willett WS, Baldwin M, Fletterick R, Cohen FE, Vandlen R, Henner D, Prusiner SB (1996) High-level expression and characterization of a purified 142-residue polypeptide of the prion protein. Biochemistry 35:5528–5537

    Article  CAS  PubMed  Google Scholar 

  41. Zhang H, Stockel J, Mehlhorn I, Groth D, Baldwin MA, Prusiner SB, James TL, Cohen FE (1997) Physical studies of conformational plasticity in a recombinant prion protein. Biochemistry 36:3543–3553

    Article  CAS  PubMed  Google Scholar 

  42. Jackson GS, Hosszu LL, Power A, Hill AF, Kenney J, Saibil H, Craven CJ, Waltho JP, Clarke AR, Collinge J (1999) Reversible conversion of monomeric human prion protein between native and fibrilogenic conformations. Science 283:1935–1937

    Article  CAS  PubMed  Google Scholar 

  43. Welker E, Raymond LD, Scheraga HA, Caughey B (2002) Intramolecular versus intermolecular disulfide bonds in prion proteins. J Biol Chem 277:33477–33481

    Article  CAS  PubMed  Google Scholar 

  44. Deleault NR, Lucassen RW, Supattapone S (2003) RNA molecules stimulate prion protein conversion. Nature 425:717–720

    Article  CAS  PubMed  Google Scholar 

  45. Derrington E, Gabus C, Leblanc P, Chnaidermann J, Grave L, Dormont D, Swietnicki W, Morillas M, Marck D, Nandi P, Darlix JL (2002) PrPC has nucleic acid chaperoning properties similar to the nucleocapsid protein of HIV-1. C R Acad Sci III 325:17–23

    Article  CAS  PubMed  Google Scholar 

  46. Moscardini M, Pistello M, Bendinelli M, Ficheux D, Miller JT, Gabus C, Le Grice SF, Surewicz WK, Darlix JL (2002) Functional interactions of nucleocapsid protein of feline immunodeficiency virus and cellular prion protein with the viral RNA. J Mol Biol 318:149–159

    Article  CAS  PubMed  Google Scholar 

  47. Gabus C, Auxilien S, Pechoux C, Dormont D, Swietnicki W, Morillas M, Surewicz W, Nandi P, Darlix JL (2001) The prion protein has DNA strand transfer properties similar to retroviral nucleocapsid protein. J Mol Biol 307:1011–1021

    Article  CAS  PubMed  Google Scholar 

  48. Proske D, Gilch S, Wopfner F, Schatzl HM, Winnacker EL, Famulok M (2002) Prion-protein-specific aptamer reduces PrPSc formation. Chembiochem 3:717–725

    Article  CAS  PubMed  Google Scholar 

  49. Weiss S, Proske D, Neumann M, Groschup MH, Kretzschmar HA, Famulok M, Winnacker EL (1997) RNA aptamers specifically interact with the prion protein PrP. J Virol 71:8790–8797

    CAS  PubMed  Google Scholar 

  50. Zeiler B, Adler V, Kryukov V, Grossman A (2003) Concentration and removal of prion proteins from biological solutions. Biotechnol Appl Biochem 37:173–182

    Article  CAS  PubMed  Google Scholar 

  51. Nandi PK, Leclerc E, Nicole JC, Takahashi M (2002) DNA-induced partial unfolding of prion protein leads to its polymerisation to amyloid. J Mol Biol 322:153–161

    Article  CAS  PubMed  Google Scholar 

  52. Adler V, Zeiler B, Kryukov V, Kascsak R, Rubenstein R, Grossman A (2003) Small, highly structured RNAs participate in the conversion of human recombinant PrP(Sen) to PrP(Res) in vitro. J Mol Biol 332:47–57

    Article  CAS  PubMed  Google Scholar 

  53. Caughey B, Raymond GJ (1993) Sulfated polyanion inhibition of scrapie-associated PrP accumulation in cultured cells. J Virol 67:643–650

    CAS  PubMed  Google Scholar 

  54. Supattapone S, Nguyen HO, Cohen FE, Prusiner SB, Scott MR (1999) Elimination of prions by branched polyamines and implications for therapeutics. Proc Natl Acad Sci USA 96:14529–14534

    Article  CAS  PubMed  Google Scholar 

  55. Supattapone S, Wille H, Uyechi L, Safar J, Tremblay P, Szoka FC, Cohen FE, Prusiner SB, Scott MR (2001) Branched polyamines cure prion-infected neuroblastoma cells. J Virol 75:3453–3461

    Article  CAS  PubMed  Google Scholar 

  56. Spirin AS (2002) Omnipotent RNA. FEBS Lett 530:4–8

    Article  CAS  PubMed  Google Scholar 

  57. Yedidia Y, Horonchik L, Tzaban S, Yanai A, Taraboulos A (2001) Proteasomes and ubiquitin are involved in the turnover of the wild-type prion protein. EMBO J 20:5383–5391

    Article  CAS  PubMed  Google Scholar 

  58. Ma J, Lindquist S (2002) Conversion of PrP to a self-perpetuating PrPSc-like conformation in the cytosol. Science 298:1785–1788

    Article  CAS  PubMed  Google Scholar 

  59. Cohen E, Taraboulos A (2003) Scrapie-like prion protein accumulates in aggresomes of cyclosporin A-treated cells. EMBO J 22:404–417

    Article  CAS  PubMed  Google Scholar 

  60. Gu Y, Hinnerwisch J, Fredricks R, Kalepu S, Mishra RS, Singh N (2003) Identification of cryptic nuclear localization signals in the prion protein. Neurobiol Dis 12:133–149

    Article  CAS  PubMed  Google Scholar 

  61. Hegde RS, Mastrianni JA, Scott MR, DeFea KA, Tremblay P, Torchia M, DeArmond SJ, Prusiner SB, Lingappa VR (1998) A transmembrane form of the prion protein in neurodegenerative disease. Science 279:827–834

    PubMed  Google Scholar 

  62. Winston WM, Molodowitch C, Hunter CP (2002) Systemic RNAi in C. elegans requires the putative transmembrane protein SID-1. Science 295:2456–2459

    Article  CAS  PubMed  Google Scholar 

  63. Wissler JH (2002) Engineering of capillary patterns in muscle by a nonmitogenic copper-ribonucleoprotein angiomorphogen (angiotropin CuRNP ribokine). Ann N Y Acad Sci 961:292–297

    CAS  PubMed  Google Scholar 

  64. Wong C, Xiong LW, Horiuchi M, Raymond L, Wehrly K, Chesebro B, Caughey B (2001) Sulfated glycans and elevated temperature stimulate PrP(Sc)-dependent cell-free formation of protease-resistant prion protein. EMBO J 20:377–386

    Article  CAS  PubMed  Google Scholar 

  65. Shaked GM, Meiner Z, Avraham I, Taraboulos A, Gabizon R (2001) Reconstitution of prion infectivity from solubilized protease-resistant PrP and nonprotein components of prion rods. J Biol Chem 276:14324–14328

    Article  CAS  PubMed  Google Scholar 

  66. Ben-Zaken O, Tzaban S, Tal Y, Horonchik L, Esko JD, Vlodavsky I, Taraboulos A (2003) Cellular heparan sulfate participates in the metabolism of prions. J Biol Chem 278:40041–40049

    Article  CAS  PubMed  Google Scholar 

  67. Hundt C, Peyrin JM, Haik S, Gauczynski S, Leucht C, Rieger R, Riley ML, Deslys JP, Dormont D, Lasmezas CI, Weiss S (2001) Identification of interaction domains of the prion protein with its 37 kDa/67 kDa laminin receptor. EMBO J 20:5876–5886

    Article  CAS  PubMed  Google Scholar 

  68. Warner RG, Hundt C, Weiss S, Turnbull JE (2002) Identification of the heparan sulfate binding sites in the cellular prion protein. J Biol Chem 277:18421–18430

    Article  CAS  PubMed  Google Scholar 

  69. Safar J, Cohen FE, Prusiner SB (2000) Quantitative traits of prion strains are enciphered in the conformation of the prion protein. Arch Virol Suppl 16:227–235

    PubMed  Google Scholar 

  70. Klohn PC, Stoltze L, Flechsig E, Enari M, Weissmann C (2003) A quantitative, highly sensitive cell-based infectivity assay for mouse scrapie prions. Proc Natl Acad Sci USA 100:11666–11671

    Article  PubMed  Google Scholar 

  71. Raymond GJ, Hope J, Kocisko DA, Priola SA, Raymond LD, Bossers A, Ironside J, Will RG, Chen SG, Petersen RB, Gambetti P, Rubenstein R, Smits MA, Lansbury PT Jr, Caughey B (1997) Molecular assessment of the potential transmissibilities of BSE and scrapie to humans. Nature 388:285–288

    Article  CAS  PubMed  Google Scholar 

  72. Meyer RK, McKinley MP, Bowman KA, Braunfeld MB, Barry RA, Prusiner SB (1986) Separation and properties of cellular and scrapie prion proteins. Proc Natl Acad Sci USA 83:2310–2314

    CAS  PubMed  Google Scholar 

  73. Winklhofer KF, Hartl FU, Tatzelt J (2001) A sensitive filter retention assay for the detection of PrP(Sc) and the screening of anti-prion compounds. FEBS Lett 503:41–45

    Article  CAS  PubMed  Google Scholar 

  74. Peretz D, Williamson RA, Matsunaga Y, Serban H, Pinilla C, Bastidas RB, Rozenshteyn R, James TL, Houghten RA, Cohen FE, Prusiner SB, Burton DR (1997) A conformational transition at the N terminus of the prion protein features in formation of the scrapie isoform. J Mol Biol 273:614–622

    Article  CAS  PubMed  Google Scholar 

  75. Safar J, Wille H, Itri V, Groth D, Serban H, Torchia M, Cohen FE, Prusiner SB (1998) Eight prion strains have PrP(Sc) molecules with different conformations. Nat Med 4:1157–1165

    CAS  PubMed  Google Scholar 

  76. Maxson L, Wong C, Herrmann LM, Caughey B, Baron GS (2003) A solid-phase assay for identification of modulators of prion protein interactions. Anal Biochem 323:54–64

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surachai Supattapone.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Supattapone, S. Prion protein conversion in vitro. J Mol Med 82, 348–356 (2004). https://doi.org/10.1007/s00109-004-0534-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-004-0534-3

Keywords

Navigation