Skip to main content

Advertisement

Log in

Die Rolle der Strahlentherapie bei der Induktion von Antitumor-Immunantworten

The role of radiotherapy in the induction of antitumor immune responses

  • Originalien
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Apetoh L, Ghiringhelli F, Tesniere A et al (2007) The interaction between HMGB1 and TLR4 dictates the outcome of anticancer chemotherapy and radiotherapy. Immunol Rev 220:47–59

    Article  PubMed  CAS  Google Scholar 

  2. Dewan MZ, Galloway AE, Kawashima N et al (2009) Fractionated but not single-dose radiotherapy induces an immune-mediated abscopal effect when combined with anti-CTLA-4 antibody. Clin Cancer Res 15:5379–5388

    Article  PubMed  CAS  Google Scholar 

  3. Finkelstein SE, Iclozan C, Bui MM et al (2012) Combination of external beam radiotherapy (EBRT) with intratumoral injection of dendritic cells as neo-adjuvant treatment of high-risk soft tissue sarcoma patients. Int J Radiat Oncol Biol Phys 82:924–932

    Article  PubMed  Google Scholar 

  4. Formenti SC, Demaria S (2009) Systemic effects of local radiotherapy. Lancet Oncol 10:718–726

    Article  PubMed  Google Scholar 

  5. Frey B, Rubner Y, Wunderlich R et al (2012) Induction of abscopal anti-tumor immunity and immunogenic tumor cell death by ionizing irradiation – implications for cancer therapies. Curr Med Chem 12:1751–1764

    Article  Google Scholar 

  6. Gehrmann M, Radons J, Molls M et al (2008) The therapeutic implications of clinically applied modifiers of heat shock protein 70 (Hsp70) expression by tumor cells. Cell Stress Chaperones 13:1–10

    Article  PubMed  CAS  Google Scholar 

  7. He J, Yin Y, Luster TA et al (2009) Antiphosphatidylserine antibody combined with irradiation damages tumor blood vessels and induces tumor immunity in a rat model of glioblastoma. Clin Cancer Res 15:6871–6880

    Article  PubMed  CAS  Google Scholar 

  8. Krause SW, Gastpar R, Andreesen R et al (2004) Treatment of colon and lung cancer patients with ex vivo heat shock protein 70-peptide-activated, autologous natural killer cells: a clinical phase i trial. Clin Cancer Res 10:3699–3707

    Article  PubMed  CAS  Google Scholar 

  9. Lee Y, Auh SL, Wang Y et al (2009) Therapeutic effects of ablative radiation on local tumor require CD8+ T cells: changing strategies for cancer treatment. Blood 114:589–595

    Article  PubMed  CAS  Google Scholar 

  10. Multhoff G (2002) Activation of natural killer cells by heat shock protein 70. Int J Hyperthermia 18:576–585

    Article  PubMed  CAS  Google Scholar 

  11. Multhoff G, Botzler C, Wiesnet M et al (1995) A stress-inducible 72-kDa heat-shock protein (HSP72) is expressed on the surface of human tumor cells, but not on normal cells. Int J Cancer 61:272–279

    Article  PubMed  CAS  Google Scholar 

  12. Multhoff G, Pfister K, Botzler C et al (2000) Adoptive transfer of human natural killer cells in mice with severe combined immunodeficiency inhibits growth of Hsp70-expressing tumors. Int J Cancer 88:791–797

    Article  PubMed  CAS  Google Scholar 

  13. Multhoff G, Pfister K, Gehrmann M et al (2001) A 14-mer Hsp70 peptide stimulates natural killer (NK) cell activity. Cell Stress Chaperones 6:337–344

    Article  PubMed  CAS  Google Scholar 

  14. Niedermann G (2002) Immunological functions of the proteasome. Curr Top Microbiol Immunol 268:91–136

    Article  PubMed  CAS  Google Scholar 

  15. Postow MA, Callahan MK, Barker CA et al (2012) Immunologic correlates of the abscopal effect in a patient with melanoma. N Engl J Med 366:925–931

    Article  PubMed  CAS  Google Scholar 

  16. Rosenberg SA (2011) Cell transfer immunotherapy for metastatic solid cancer—what clinicians need to know. Nat Rev Clin Oncol 8:577–585

    Article  PubMed  CAS  Google Scholar 

  17. Saveanu L, Carroll O, Weimershaus M et al (2009) IRAP identifies an endosomal compartment required for MHC class I cross-presentation. Science 325:213–217

    Article  PubMed  CAS  Google Scholar 

  18. Schildkopf P, Frey B, Ott OJ et al (2011) Radiation combined with hyperthermia induces HSP70-dependent maturation of dendritic cells and release of pro-inflammatory cytokines by dendritic cells and macrophages. Radiother Oncol 101:109–115

    Article  PubMed  CAS  Google Scholar 

  19. Shiraishi K, Ishiwata Y, Nakagawa K et al (2008) Enhancement of antitumor radiation efficacy and consistent induction of the abscopal effect in mice by ECI301, an active variant of macrophage inflammatory protein-1alpha. Clin Cancer Res 14:1159–1166

    Article  PubMed  CAS  Google Scholar 

  20. Stangl S, Gehrmann M, Riegger J et al (2011) Targeting membrane heat-shock protein 70 (Hsp70) on tumors by cmHsp70.1 antibody. Proc Natl Acad Sci USA 108:733–738

    Article  PubMed  CAS  Google Scholar 

  21. Stangl S, Wortmann A, Guertler U et al (2006) Control of metastasized pancreatic carcinomas in SCID/beige mice with human IL-2/TKD-activated NK cells. J Immunol 176:6270–6276

    PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt für sich und seine Koautoren an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. S. Gaipl PhD.

Additional information

G. Multhoff, U.S. Gaipl und G. Niedermann haben gleichermaßen zur Arbeit beigetragen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Multhoff, G., Gaipl, U. & Niedermann, G. Die Rolle der Strahlentherapie bei der Induktion von Antitumor-Immunantworten. Strahlenther Onkol 188 (Suppl 3), 312–315 (2012). https://doi.org/10.1007/s00066-012-0206-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-012-0206-0

Navigation