Skip to main content

Advertisement

Log in

NF-κB pathways in hematological malignancies

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The nuclear factor κB or NF-κB transcription factor family plays a key role in several cellular functions, i.e. inflammation, apoptosis, cell survival, proliferation, angiogenesis, and innate and acquired immunity. The constitutive activation of NF-κB is typical of most malignancies and plays a major role in tumorigenesis. In this review, we describe NF-κB and its two pathways: the canonical pathway (RelA/p50) and the non-canonical pathway (RelB/p50 or RelB/p52). We then consider the role of the NF-κB subunits in the development and functional activity of B cells, T cells, macrophages and dendritic cells, which are the targets of hematological malignancies. The relevance of the two pathways is described in normal B and T cells and in hematological malignancies, acute and chronic leukemias (ALL, AML, CLL, CML), B lymphomas (DLBCLs, Hodgkin’s lymphoma), T lymphomas (ATLL, ALCL) and multiple myeloma. We describe the interaction of NF-κB with the apoptotic pathways induced by TRAIL and the transcription factor p53. Finally, we discuss therapeutic anti-tumoral approaches as mono-therapies or combination therapies aimed to block NF-κB activity and to induce apoptosis (PARAs and Nutlin-3).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674. doi:10.1016/j.cell.2011.02.013

    Article  CAS  PubMed  Google Scholar 

  2. Mantovani A, Allavena P, Sica A, Balkwill F (2008) Cancer-related inflammation. Nature 454(7203):436–444. doi:10.1038/nature07205

    Article  CAS  PubMed  Google Scholar 

  3. Karin M, Cao Y, Greten FR, Li ZW (2002) NF-kappaB in cancer: from innocent bystander to major culprit. Nat Rev Cancer 2(4):301–310. doi:10.1038/nrc780

    Article  CAS  PubMed  Google Scholar 

  4. Ben-Neriah Y, Karin M (2011) Inflammation meets cancer, with NF-kappaB as the matchmaker. Nat Immunol 12(8):715–723. doi:10.1038/ni.2060

    Article  CAS  PubMed  Google Scholar 

  5. Huang DB, Vu D, Ghosh G (2005) NF-kappaB RelB forms an intertwined homodimer. Structure 13(9):1365–1373. doi:10.1016/j.str.2005.06.018

    Article  CAS  PubMed  Google Scholar 

  6. Vu D, Huang DB, Vemu A, Ghosh G (2013) A structural basis for selective dimerization by NF-kappaB RelB. J Mol Biol 425(11):1934–1945. doi:10.1016/j.jmb.2013.02.020

    Article  CAS  PubMed  Google Scholar 

  7. Derudder E, Dejardin E, Pritchard LL, Green DR, Korner M, Baud V (2003) RelB/p50 dimers are differentially regulated by tumor necrosis factor-alpha and lymphotoxin-beta receptor activation: critical roles for p100. J Biol Chem 278(26):23278–23284. doi:10.1074/jbc.M300106200

    Article  CAS  PubMed  Google Scholar 

  8. Vallabhapurapu S, Matsuzawa A, Zhang W, Tseng PH, Keats JJ, Wang H, Vignali DA, Bergsagel PL, Karin M (2008) Nonredundant and complementary functions of TRAF2 and TRAF3 in a ubiquitination cascade that activates NIK-dependent alternative NF-kappaB signaling. Nat Immunol 9(12):1364–1370. doi:10.1038/ni.1678

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Sen R, Baltimore D (1986) Inducibility of kappa immunoglobulin enhancer-binding protein Nf-kappa B by a posttranslational mechanism. Cell 47(6):921–928. doi:10.1016/0092-8674(86)90807-X

    Article  CAS  PubMed  Google Scholar 

  10. Gerondakis S, Grossmann M, Nakamura Y, Pohl T, Grumont R (1999) Genetic approaches in mice to understand Rel/NF-kappaB and IkappaB function: transgenics and knockouts. Oncogene 18(49):6888–6895. doi:10.1038/sj.onc.1203236

    Article  CAS  PubMed  Google Scholar 

  11. Caamano JH, Rizzo CA, Durham SK, Barton DS, Raventos-Suarez C, Snapper CM, Bravo R (1998) Nuclear factor (NF)-kappa B2 (p100/p52) is required for normal splenic microarchitecture and B cell-mediated immune responses. J Exp Med 187(2):185–196. doi:10.1084/jem.187.2.185

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Franzoso G, Carlson L, Poljak L, Shores EW, Epstein S, Leonardi A, Grinberg A, Tran T, Scharton-Kersten T, Anver M, Love P, Brown K, Siebenlist U (1998) Mice deficient in nuclear factor (NF)-kappa B/p52 present with defects in humoral responses, germinal center reactions, and splenic microarchitecture. J Exp Med 187(2):147–159. doi:10.1084/jem.187.2.147

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Weih DS, Yilmaz ZB, Weih F (2001) Essential role of RelB in germinal center and marginal zone formation and proper expression of homing chemokines. J Immunol 167(4):1909–1919

    Article  CAS  PubMed  Google Scholar 

  14. Grigoriadis G, Zhan Y, Grumont RJ, Metcalf D, Handman E, Cheers C, Gerondakis S (1996) The Rel subunit of NF-kappaB-like transcription factors is a positive and negative regulator of macrophage gene expression: distinct roles for Rel in different macrophage populations. EMBO J 15(24):7099–7107

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Gerondakis S, Strasser A, Metcalf D, Grigoriadis G, Scheerlinck JY, Grumont RJ (1996) Rel-deficient T cells exhibit defects in production of interleukin 3 and granulocyte-macrophage colony-stimulating factor. Proc Natl Acad Sci USA 93(8):3405–3409. doi:10.1073/pnas.93.8.3405

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Horwitz BH, Scott ML, Cherry SR, Bronson RT, Baltimore D (1997) Failure of lymphopoiesis after adoptive transfer of NF-kappaB-deficient fetal liver cells. Immunity 6(6):765–772. doi:10.1016/S1074-7613(00)80451-3

    Article  CAS  PubMed  Google Scholar 

  17. Beg AA, Baltimore D (1996) An essential role for NF-kappaB in preventing TNF-alpha-induced cell death. Science 274(5288):782–784. doi:10.1126/science.274.5288.782

    Article  CAS  PubMed  Google Scholar 

  18. Doi TS, Takahashi T, Taguchi O, Azuma T, Obata Y (1997) NF-kappa B RelA-deficient lymphocytes: normal development of T cells and B cells, impaired production of IgA and IgG1 and reduced proliferative responses. J Exp Med 185((5):953–961. doi:10.1084/jem.185.5.953

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Ouaaz F, Arron J, Zheng Y, Choi Y, Beg AA (2002) Dendritic cell development and survival require distinct NF-kappaB subunits. Immunity 16(2):257–270. doi:10.1016/S1074-7613(02)00272-8

    Article  CAS  PubMed  Google Scholar 

  20. Weih F, Durham SK, Barton DS, Sha WC, Baltimore D, Bravo R (1997) p50-NF-kappaB complexes partially compensate for the absence of RelB: severely increased pathology in p50(−/−)relB(−/−) double-knockout mice. J Exp Med 185(7):1359–1370. doi:10.1084/jem.185.7.1359

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Weih F, Warr G, Yang H, Bravo R (1997) Multifocal defects in immune responses in RelB-deficient mice. J Immunol 158(11):5211–5218

    CAS  PubMed  Google Scholar 

  22. Caamano J, Alexander J, Craig L, Bravo R, Hunter CA (1999) The NF-kappa B family member RelB is required for innate and adaptive immunity to Toxoplasma gondii. J Immunol 163(8):4453–4461

    CAS  PubMed  Google Scholar 

  23. Burkly L, Hession C, Ogata L, Reilly C, Marconi LA, Olson D, Tizard R, Cate R, Lo D (1995) Expression of relB is required for the development of thymic medulla and dendritic cells. Nature 373(6514):531–536. doi:10.1038/373531a0

    Article  CAS  PubMed  Google Scholar 

  24. Weih F, Carrasco D, Durham SK, Barton DS, Rizzo CA, Ryseck RP, Lira SA, Bravo R (1995) Multiorgan inflammation and hematopoietic abnormalities in mice with a targeted disruption of RelB, a member of the NF-kappa B/Rel family. Cell 80(2):331–340. doi:10.1016/0092-8674(95)90416-6

    Article  CAS  PubMed  Google Scholar 

  25. Wu L, D’Amico A, Winkel KD, Suter M, Lo D, Shortman K (1998) RelB is essential for the development of myeloid-related CD8alpha-dendritic cells but not of lymphoid-related CD8alpha+ dendritic cells. Immunity 9(6):839–847. doi:10.1016/S1074-7613(00)80649-4

    Article  CAS  PubMed  Google Scholar 

  26. Grigoriadis G, Vasanthakumar A, Banerjee A, Grumont R, Overall S, Gleeson P, Shannon F, Gerondakis S (2011) c-Rel controls multiple discrete steps in the thymic development of Foxp3+ CD4 regulatory T cells. PLoS One 6(10):e26851. doi:10.1371/journal.pone.0026851

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Grossmann M, Metcalf D, Merryfull J, Beg A, Baltimore D, Gerondakis S (1999) The combined absence of the transcription factors Rel and RelA leads to multiple hemopoietic cell defects. Proc Natl Acad Sci USA 96(21):11848–11853. doi:10.1073/pnas.96.21.11848

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Grossmann M, O’Reilly LA, Gugasyan R, Strasser A, Adams JM, Gerondakis S (2000) The anti-apoptotic activities of Rel and RelA required during B-cell maturation involve the regulation of Bcl-2 expression. EMBO J 19(23):6351–6360. doi:10.1093/emboj/19.23.6351

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Grumont RJ, Rourke IJ, O’Reilly LA, Strasser A, Miyake K, Sha W, Gerondakis S (1998) B lymphocytes differentially use the Rel and nuclear factor kappaB1 (NF-kappaB1) transcription factors to regulate cell cycle progression and apoptosis in quiescent and mitogen-activated cells. J Exp Med 187(5):663–674. doi:10.1084/jem.187.5.663

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Sha WC, Liou HC, Tuomanen EI, Baltimore D (1995) Targeted disruption of the p50 subunit of NF-kappa B leads to multifocal defects in immune responses. Cell 80(2):321–330. doi:10.1016/0092-8674(95)90415-8

    Article  CAS  PubMed  Google Scholar 

  31. Franzoso G, Carlson L, Xing L, Poljak L, Shores EW, Brown KD, Leonardi A, Tran T, Boyce BF, Siebenlist U (1997) Requirement for NF-kappaB in osteoclast and B-cell development. Genes Dev 11(24):3482–3496. doi:10.1101/gad.11.24.3482

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Beg AA, Sha WC, Bronson RT, Baltimore D (1995) Constitutive NF-kappa B activation, enhanced granulopoiesis, and neonatal lethality in I kappa B alpha-deficient mice. Genes Dev 9(22):2736–2746. doi:10.1101/gad.9.22.2736

    Article  CAS  PubMed  Google Scholar 

  33. Klement JF, Rice NR, Car BD, Abbondanzo SJ, Powers GD, Bhatt PH, Chen CH, Rosen CA, Stewart CL (1996) IkappaBalpha deficiency results in a sustained NF-kappaB response and severe widespread dermatitis in mice. Mol Cell Biol 16(5):2341–2349

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Li ZW, Chu W, Hu Y, Delhase M, Deerinck T, Ellisman M, Johnson R, Karin M (1999) The IKKbeta subunit of IkappaB kinase (IKK) is essential for nuclear factor kappaB activation and prevention of apoptosis. J Exp Med 189(11):1839–1845. doi:10.1084/jem.189.11.1839

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Tanaka M, Fuentes ME, Yamaguchi K, Durnin MH, Dalrymple SA, Hardy KL, Goeddel DV (1999) Embryonic lethality, liver degeneration, and impaired NF-kappa B activation in IKK-beta-deficient mice. Immunity 10(4):421–429. doi:10.1016/S1074-7613(00)80042-4

    Article  CAS  PubMed  Google Scholar 

  36. Yamada T, Mitani T, Yorita K, Uchida D, Matsushima A, Iwamasa K, Fujita S, Matsumoto M (2000) Abnormal immune function of hemopoietic cells from alymphoplasia (aly) mice, a natural strain with mutant NF-kappa B-inducing kinase. J Immunol 165(2):804–812

    Article  CAS  PubMed  Google Scholar 

  37. Hu Y, Baud V, Delhase M, Zhang P, Deerinck T, Ellisman M, Johnson R, Karin M (1999) Abnormal morphogenesis but intact IKK activation in mice lacking the IKKalpha subunit of IkappaB kinase. Science 284(5412):316–320. doi:10.1126/science.284.5412.316

    Article  CAS  PubMed  Google Scholar 

  38. Takeda K, Takeuchi O, Tsujimura T, Itami S, Adachi O, Kawai T, Sanjo H, Yoshikawa K, Terada N, Akira S (1999) Limb and skin abnormalities in mice lacking IKKalpha. Science 284(5412):313–316. doi:10.1126/science.284.5412.313

    Article  CAS  PubMed  Google Scholar 

  39. Senftleben U, Cao Y, Xiao G, Greten FR, Krahn G, Bonizzi G, Chen Y, Hu Y, Fong A, Sun SC, Karin M (2001) Activation by IKKalpha of a second, evolutionary conserved. NF-kappa B signaling pathway. Science 293(5534):1495–1499. doi:10.1126/science.1062677

    Article  CAS  PubMed  Google Scholar 

  40. Dejardin E, Droin NM, Delhase M, Haas E, Cao Y, Makris C, Li ZW, Karin M, Ware CF, Green DR (2002) The lymphotoxin-beta receptor induces different patterns of gene expression via two NF-kappaB pathways. Immunity 17(4):525–535. doi:10.1016/S1074-7613(02)00423-5

    Article  CAS  PubMed  Google Scholar 

  41. Bonizzi G, Bebien M, Otero DC, Johnson-Vroom KE, Cao Y, Vu D, Jegga AG, Aronow BJ, Ghosh G, Rickert RC, Karin M (2004) Activation of IKKalpha target genes depends on recognition of specific kappaB binding sites by RelB:p52 dimers. EMBO J 23(21):4202–4210. doi:10.1038/sj.emboj.7600391

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Gasparini C, Feldmann M (2012) NF-kappaB as a target for modulating inflammatory responses. Curr Pharm Des 18(35):5735–5745. doi:10.2174/138161212803530763

    Article  CAS  PubMed  Google Scholar 

  43. Pomerantz JL, Baltimore D (2002) Two pathways to NF-kappaB. Mol Cell 10(4):693–695. doi:10.1016/S1097-2765(02)00697-4

    Article  CAS  PubMed  Google Scholar 

  44. Bonizzi G, Karin M (2004) The two NF-kappaB activation pathways and their role in innate and adaptive immunity. Trends Immunol 25(6):280–288. doi:10.1016/j.it.2004.03.008

    Article  CAS  PubMed  Google Scholar 

  45. Buchan SL, Al-Shamkhani A (2012) Distinct motifs in the intracellular domain of human CD30 differentially activate canonical and alternative transcription factor NF-kappaB signaling. PLoS One 7(9):e45244. doi:10.1371/journal.pone.0045244

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Theill LE, Boyle WJ, Penninger JM (2002) RANK-L and RANK: T cells, bone loss, and mammalian evolution. Annu Rev Immunol 20:795–823. doi:10.1146/annurev.immunol.20.100301.064753

    Article  CAS  PubMed  Google Scholar 

  47. Rauert H, Wicovsky A, Muller N, Siegmund D, Spindler V, Waschke J, Kneitz C, Wajant H (2010) Membrane tumor necrosis factor (TNF) induces p100 processing via TNF receptor-2 (TNFR2). J Biol Chem 285(10):7394–7404. doi:10.1074/jbc.M109.037341

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Young RM, Staudt LM (2013) Targeting pathological B cell receptor signalling in lymphoid malignancies. Nat Rev Drug Discov 12(3):229–243. doi:10.1038/nrd3937

    Article  CAS  PubMed  Google Scholar 

  49. Weil R, Israel A (2006) Deciphering the pathway from the TCR to NF-kappaB. Cell Death Differ 13(5):826–833. doi:10.1038/sj.cdd.4401856

    Article  CAS  PubMed  Google Scholar 

  50. Sun SC (2011) Non-canonical NF-kappaB signaling pathway. Cell Res 21(1):71–85. doi:10.1038/cr.2010.177

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Gerondakis S, Banerjee A, Grigoriadis G, Vasanthakumar A, Gugasyan R, Sidwell T, Grumont RJ (2012) NF-kappaB subunit specificity in hemopoiesis. Immunol Rev 246(1):272–285. doi:10.1111/j.1600-065X.2011.01090.x

    Article  PubMed  CAS  Google Scholar 

  52. Bottero V, Withoff S, Verma IM (2006) NF-kappaB and the regulation of hematopoiesis. Cell Death Differ 13(5):785–797. doi:10.1038/sj.cdd.4401888

    Article  CAS  PubMed  Google Scholar 

  53. Jimi E, Phillips RJ, Rincon M, Voll R, Karasuyama H, Flavell R, Ghosh S (2005) Activation of NF-kappaB promotes the transition of large, CD43+ pre-B cells to small, CD43-pre-B cells. Int Immunol 17(6):815–825. doi:10.1093/intimm/dxh263

    Article  CAS  PubMed  Google Scholar 

  54. Derudder E, Cadera EJ, Vahl JC, Wang J, Fox CJ, Zha S, van Loo G, Pasparakis M, Schlissel MS, Schmidt-Supprian M, Rajewsky K (2009) Development of immunoglobulin lambda-chain-positive B cells, but not editing of immunoglobulin kappa-chain, depends on NF-kappaB signals. Nat Immunol 10(6):647–654. doi:10.1038/ni.1732

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Siebenlist U, Brown K, Claudio E (2005) Control of lymphocyte development by nuclear factor-kappaB. Nat Rev Immunol 5(6):435–445. doi:10.1038/nri1629

    Article  CAS  PubMed  Google Scholar 

  56. Kaileh M, Sen R (2012) NF-kappaB function in B lymphocytes. Immunol Rev 246(1):254–271. doi:10.1111/j.1600-065X.2012.01106.x

    Article  PubMed  CAS  Google Scholar 

  57. Castro I, Wright JA, Damdinsuren B, Hoek KL, Carlesso G, Shinners NP, Gerstein RM, Woodland RT, Sen R, Khan WN (2009) B cell receptor-mediated sustained c-Rel activation facilitates late transitional B cell survival through control of B cell activating factor receptor and NF-kappaB2. J Immunol 182(12):7729–7737. doi:10.4049/jimmunol.0803281

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Smith SH, Cancro MP (2003) Cutting edge: B cell receptor signals regulate BLyS receptor levels in mature B cells and their immediate progenitors. J Immunol 170(12):5820–5823

    Article  CAS  PubMed  Google Scholar 

  59. Pillai S, Cariappa A (2009) The follicular versus marginal zone B lymphocyte cell fate decision. Nat Rev Immunol 9(11):767–777. doi:10.1038/nri2656

    Article  CAS  PubMed  Google Scholar 

  60. Victora GD, Nussenzweig MC (2012) Germinal centers. Annu Rev Immunol 30:429–457. doi:10.1146/annurev-immunol-020711-075032

    Article  CAS  PubMed  Google Scholar 

  61. Mora AL, Stanley S, Armistead W, Chan AC, Boothby M (2001) Inefficient ZAP-70 phosphorylation and decreased thymic selection in vivo result from inhibition of NF-kappaB/Rel. J Immunol 167(10):5628–5635

    Article  CAS  PubMed  Google Scholar 

  62. Oh H, Ghosh S (2013) NF-kappaB: roles and regulation in different CD4(+) T-cell subsets. Immunol Rev 252(1):41–51. doi:10.1111/imr.12033

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  63. Long M, Park SG, Strickland I, Hayden MS, Ghosh S (2009) Nuclear factor-kappaB modulates regulatory T cell development by directly regulating expression of Foxp3 transcription factor. Immunity 31(6):921–931. doi:10.1016/j.immuni.2009.09.022

    Article  CAS  PubMed  Google Scholar 

  64. Molinero LL, Cubre A, Mora-Solano C, Wang Y, Alegre ML (2012) T cell receptor/CARMA1/NF-kappaB signaling controls T-helper (Th) 17 differentiation. Proc Natl Acad Sci USA 109(45):18529–18534. doi:10.1073/pnas.1204557109

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Yoshimura S, Bondeson J, Foxwell BM, Brennan FM, Feldmann M (2001) Effective antigen presentation by dendritic cells is NF-kappaB dependent: coordinate regulation of MHC, co-stimulatory molecules and cytokines. Int Immunol 13(5):675–683. doi:10.1093/intimm/13.5.675

    Article  CAS  PubMed  Google Scholar 

  66. Gasparini C, Foxwell BM, Feldmann M (2009) RelB/p50 regulates CCL19 production, but fails to promote human DC maturation. Eur J Immunol 39(8):2215–2223. doi:10.1002/eji.200939209

    Article  CAS  PubMed  Google Scholar 

  67. Heel K, Tabone T, Rohrig KJ, Maslen PG, Meehan K, Grimwade LF, Erber WN (2013) Developments in the immunophenotypic analysis of haematological malignancies. Blood Rev 27(4):193–207. doi:10.1016/j.blre.2013.06.005

    Article  CAS  PubMed  Google Scholar 

  68. Rodriguez-Abreu D, Bordoni A, Zucca E (2007) Epidemiology of hematological malignancies. Ann Oncol 18(Suppl 1):i3–i8. doi:10.1093/annonc/mdl443

    Article  PubMed  Google Scholar 

  69. Campo E, Swerdlow SH, Harris NL, Pileri S, Stein H, Jaffe ES (2011) The 2008 WHO classification of lymphoid neoplasms and beyond: evolving concepts and practical applications. Blood 117(19):5019–5032. doi:10.1182/blood-2011-01-293050

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Braggio E, Egan JB, Fonseca R, Stewart AK (2013) Lessons from next-generation sequencing analysis in hematological malignancies. Blood Cancer J 3:e127. doi:10.1038/bcj.2013.26

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Rampal R, Levine RL (2013) Leveraging cancer genome information in hematologic malignancies. J Clin Oncol 31(15):1885–1892. doi:10.1200/JCO.2013.48.7447

    Article  CAS  PubMed  Google Scholar 

  72. Brown CM, Larsen SR, Iland HJ, Joshua DE, Gibson J (2012) Leukaemias into the 21st century: part 1: the acute leukaemias. Intern Med J 42(11):1179–1186. doi:10.1111/j.1445-5994.2012.02938.x

    Article  CAS  PubMed  Google Scholar 

  73. Gibson J, Iland HJ, Larsen SR, Brown CM, Joshua DE (2013) Leukaemias into the 21st century. Part 2: the chronic leukaemias. Intern Med J 43(5):484–494. doi:10.1111/imj.12135

    Article  CAS  PubMed  Google Scholar 

  74. Alizadeh AA, Eisen MB, Davis RE, Ma C, Lossos IS, Rosenwald A, Boldrick JC, Sabet H, Tran T, Yu X, Powell JI, Yang L, Marti GE, Moore T, Hudson J Jr, Lu L, Lewis DB, Tibshirani R, Sherlock G, Chan WC, Greiner TC, Weisenburger DD, Armitage JO, Warnke R, Levy R, Wilson W, Grever MR, Byrd JC, Botstein D, Brown PO, Staudt LM (2000) Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403(6769):503–511. doi:10.1038/35000501

    Article  CAS  PubMed  Google Scholar 

  75. Rajkumar SV (2009) Multiple myeloma. Curr Probl Cancer 33(1):7–64. doi:10.1016/j.currproblcancer.2009.01.001

    Article  PubMed  Google Scholar 

  76. Raab MS, Podar K, Breitkreutz I, Richardson PG, Anderson KC (2009) Multiple myeloma. Lancet 374(9686):324–339. doi:10.1016/S0140-6736(09)60221-X

    Article  PubMed  Google Scholar 

  77. Jaffe ES (2009) The 2008 WHO classification of lymphomas: implications for clinical practice and translational research. Hematology (Am Soc Hematol Educ Program):523–531. doi:10.1182/asheducation-2009.1.523

  78. Shaffer AL 3rd, Young RM, Staudt LM (2012) Pathogenesis of human B cell lymphomas. Annu Rev Immunol 30:565–610. doi:10.1146/annurev-immunol-020711-075027

    Article  CAS  PubMed  Google Scholar 

  79. Nogai H, Dorken B, Lenz G (2011) Pathogenesis of non-Hodgkin’s lymphoma. J Clin Oncol 29(14):1803–1811. doi:10.1200/JCO.2010.33.3252

    Article  CAS  PubMed  Google Scholar 

  80. Rui L, Schmitz R, Ceribelli M, Staudt LM (2011) Malignant pirates of the immune system. Nat Immunol 12(10):933–940. doi:10.1038/ni.2094

    Article  CAS  PubMed  Google Scholar 

  81. Jost PJ, Ruland J (2007) Aberrant NF-kappaB signaling in lymphoma: mechanisms, consequences, and therapeutic implications. Blood 109(7):2700–2707. doi:10.1182/blood-2006-07-025809

    CAS  PubMed  Google Scholar 

  82. Li ZW, Chen H, Campbell RA, Bonavida B, Berenson JR (2008) NF-kappaB in the pathogenesis and treatment of multiple myeloma. Curr Opin Hematol 15(4):391–399. doi:10.1097/MOH.0b013e328302c7f4

    Article  CAS  PubMed  Google Scholar 

  83. Braun T, Carvalho G, Coquelle A, Vozenin MC, Lepelley P, Hirsch F, Kiladjian JJ, Ribrag V, Fenaux P, Kroemer G (2006) NF-kappaB constitutes a potential therapeutic target in high-risk myelodysplastic syndrome. Blood 107(3):1156–1165. doi:10.1182/blood-2005-05-1989

    Article  CAS  PubMed  Google Scholar 

  84. Guzman ML, Neering SJ, Upchurch D, Grimes B, Howard DS, Rizzieri DA, Luger SM, Jordan CT (2001) Nuclear factor-kappaB is constitutively activated in primitive human acute myelogenous leukemia cells. Blood 98(8):2301–2307. doi:10.1182/blood.V98.8.2301

    Article  CAS  PubMed  Google Scholar 

  85. Shanmugam R, Gade P, Wilson-Weekes A, Sayar H, Suvannasankha A, Goswami C, Li L, Gupta S, Cardoso AA, Al Baghdadi T, Sargent KJ, Cripe LD, Kalvakolanu DV, Boswell HS (2012) A noncanonical Flt3ITD/NF-kappaB signaling pathway represses DAPK1 in acute myeloid leukemia. Clin Cancer Res 18(2):360–369. doi:10.1158/1078-0432.CCR-10-3022

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  86. Suhasini M, Reddy CD, Reddy EP, DiDonato JA, Pilz RB (1997) cAMP-induced NF-kappaB (p50/relB) binding to a c-myb intronic enhancer correlates with c-myb up-regulation and inhibition of erythroleukemia cell differentiation. Oncogene 15(15):1859–1870. doi:10.1038/sj.onc.1201530

    Article  CAS  PubMed  Google Scholar 

  87. Suhasini M, Pilz RB (1999) Transcriptional elongation of c-myb is regulated by NF-kappaB (p50/RelB). Oncogene 18(51):7360–7369. doi:10.1038/sj.onc.1203158

    Article  CAS  PubMed  Google Scholar 

  88. Kirchner D, Duyster J, Ottmann O, Schmid RM, Bergmann L, Munzert G (2003) Mechanisms of Bcr-Abl-mediated NF-kappaB/Rel activation. Exp Hematol 31(6):504–511. doi:10.1016/S0301-472X(03)00069-9

    Article  CAS  PubMed  Google Scholar 

  89. Kordes U, Krappmann D, Heissmeyer V, Ludwig WD, Scheidereit C (2000) Transcription factor NF-kappaB is constitutively activated in acute lymphoblastic leukemia cells. Leukemia 14(3):399–402. doi:10.1038/sj.leu.2401705

    Article  CAS  PubMed  Google Scholar 

  90. Vilimas T, Mascarenhas J, Palomero T, Mandal M, Buonamici S, Meng F, Thompson B, Spaulding C, Macaroun S, Alegre ML, Kee BL, Ferrando A, Miele L, Aifantis I (2007) Targeting the NF-kappaB signaling pathway in Notch1-induced T-cell leukemia. Nat Med 13(1):70–77. doi:10.1038/nm1524

    Article  CAS  PubMed  Google Scholar 

  91. Liu Z, Hazan-Halevy I, Harris DM, Li P, Ferrajoli A, Faderl S, Keating MJ, Estrov Z (2011) STAT-3 activates NF-kappaB in chronic lymphocytic leukemia cells. Mol Cancer Res 9(4):507–515. doi:10.1158/1541-7786.MCR-10-0559

    Article  CAS  PubMed  Google Scholar 

  92. Xu J, Zhou P, Wang W, Sun A, Guo F (2013) RelB, together with RelA, sustains cell survival and confers proteasome inhibitor sensitivity of chronic lymphocytic leukemia cells from bone marrow. J Mol Med (Berl). doi:10.1007/s00109-013-1081-6

    Google Scholar 

  93. Mineva ND, Rothstein TL, Meyers JA, Lerner A, Sonenshein GE (2007) CD40 ligand-mediated activation of the de novo RelB NF-kappaB synthesis pathway in transformed B cells promotes rescue from apoptosis. J Biol Chem 282(24):17475–17485. doi:10.1074/jbc.M607313200

    Article  CAS  PubMed  Google Scholar 

  94. Mori N, Fujii M, Ikeda S, Yamada Y, Tomonaga M, Ballard DW, Yamamoto N (1999) Constitutive activation of NF-kappaB in primary adult T-cell leukemia cells. Blood 93(7):2360–2368

    CAS  PubMed  Google Scholar 

  95. Sun SC, Yamaoka S (2005) Activation of NF-kappaB by HTLV-I and implications for cell transformation. Oncogene 24(39):5952–5964. doi:10.1038/sj.onc.1208969

    Article  CAS  PubMed  Google Scholar 

  96. Isogawa M, Higuchi M, Takahashi M, Oie M, Mori N, Tanaka Y, Aoyagi Y, Fujii M (2008) Rearranged NF-kappa B2 gene in an adult T-cell leukemia cell line. Cancer Sci 99(4):792–798. doi:10.1111/j.1349-7006.2008.00750.x

    Article  CAS  PubMed  Google Scholar 

  97. Ohsugi T, Ishida T, Shimasaki T, Okada S, Umezawa K (2013) p53 dysfunction precedes the activation of nuclear factor-kappaB during disease progression in mice expressing Tax, a human T-cell leukemia virus type 1 oncoprotein. Carcinogenesis 34(9):2129–2136. doi:10.1093/carcin/bgt144

    Article  CAS  PubMed  Google Scholar 

  98. Demchenko YN, Kuehl WM (2010) A critical role for the NFkB pathway in multiple myeloma. Oncotarget 1(1):59–68

    PubMed Central  PubMed  Google Scholar 

  99. Hailfinger S, Nogai H, Pelzer C, Jaworski M, Cabalzar K, Charton JE, Guzzardi M, Decaillet C, Grau M, Dorken B, Lenz P, Lenz G, Thome M (2011) Malt1-dependent RelB cleavage promotes canonical NF-kappaB activation in lymphocytes and lymphoma cell lines. Proc Natl Acad Sci USA 108(35):14596–14601. doi:10.1073/pnas.1105020108

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  100. Calado DP, Zhang B, Srinivasan L, Sasaki Y, Seagal J, Unitt C, Rodig S, Kutok J, Tarakhovsky A, Schmidt-Supprian M, Rajewsky K (2010) Constitutive canonical NF-kappaB activation cooperates with disruption of BLIMP1 in the pathogenesis of activated B cell-like diffuse large cell lymphoma. Cancer Cell 18(6):580–589. doi:10.1016/j.ccr.2010.11.024

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  101. Ranuncolo SM, Pittaluga S, Evbuomwan MO, Jaffe ES, Lewis BA (2012) Hodgkin lymphoma requires stabilized NIK and constitutive RelB expression for survival. Blood 120(18):3756–3763. doi:10.1182/blood-2012-01-405951

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  102. Nonaka M, Horie R, Itoh K, Watanabe T, Yamamoto N, Yamaoka S (2005) Aberrant NF-kappaB2/p52 expression in Hodgkin/Reed–Sternberg cells and CD30-transformed rat fibroblasts. Oncogene 24(24):3976–3986. doi:10.1038/sj.onc.1208564

    Article  CAS  PubMed  Google Scholar 

  103. Guo F, Sun A, Wang W, He J, Hou J, Zhou P, Chen Z (2009) TRAF1 is involved in the classical NF-kappaB activation and CD30-induced alternative activity in Hodgkin’s lymphoma cells. Mol Immunol 46(13):2441–2448. doi:10.1016/j.molimm.2009.05.178

    Article  CAS  PubMed  Google Scholar 

  104. Schwarzer R, Dorken B, Jundt F (2012) Notch is an essential upstream regulator of NF-kappaB and is relevant for survival of Hodgkin and Reed–Sternberg cells. Leukemia 26(4):806–813. doi:10.1038/leu.2011.265

    Article  CAS  PubMed  Google Scholar 

  105. Wright CW, Rumble JM, Duckett CS (2007) CD30 activates both the canonical and alternative NF-kappaB pathways in anaplastic large cell lymphoma cells. J Biol Chem 282(14):10252–10262. doi:10.1074/jbc.M608817200

    Article  CAS  PubMed  Google Scholar 

  106. Mathas S, Johrens K, Joos S, Lietz A, Hummel F, Janz M, Jundt F, Anagnostopoulos I, Bommert K, Lichter P, Stein H, Scheidereit C, Dorken B (2005) Elevated NF-kappaB p50 complex formation and Bcl-3 expression in classical Hodgkin, anaplastic large-cell, and other peripheral T-cell lymphomas. Blood 106(13):4287–4293. doi:10.1182/blood-2004-09-3620

    Article  CAS  PubMed  Google Scholar 

  107. Klapproth K, Sander S, Marinkovic D, Baumann B, Wirth T (2009) The IKK2/NF-(kappa)B pathway suppresses MYC-induced lymphomagenesis. Blood 114(12):2448–2458. doi:10.1182/blood-2008-09-181008

    Article  CAS  PubMed  Google Scholar 

  108. Annunziata CM, Davis RE, Demchenko Y, Bellamy W, Gabrea A, Zhan F, Lenz G, Hanamura I, Wright G, Xiao W, Dave S, Hurt EM, Tan B, Zhao H, Stephens O, Santra M, Williams DR, Dang L, Barlogie B, Shaughnessy JD Jr, Kuehl WM, Staudt LM (2007) Frequent engagement of the classical and alternative NF-kappaB pathways by diverse genetic abnormalities in multiple myeloma. Cancer Cell 12(2):115–130. doi:10.1016/j.ccr.2007.07.004

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  109. Keats JJ, Fonseca R, Chesi M, Schop R, Baker A, Chng WJ, Van Wier S, Tiedemann R, Shi CX, Sebag M, Braggio E, Henry T, Zhu YX, Fogle H, Price-Troska T, Ahmann G, Mancini C, Brents LA, Kumar S, Greipp P, Dispenzieri A, Bryant B, Mulligan G, Bruhn L, Barrett M, Valdez R, Trent J, Stewart AK, Carpten J, Bergsagel PL (2007) Promiscuous mutations activate the noncanonical NF-kappaB pathway in multiple myeloma. Cancer Cell 12(2):131–144. doi:10.1016/j.ccr.2007.07.003

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  110. Demchenko YN, Glebov OK, Zingone A, Keats JJ, Bergsagel PL, Kuehl WM (2010) Classical and/or alternative NF-kappaB pathway activation in multiple myeloma. Blood 115(17):3541–3552. doi:10.1182/blood-2009-09-243535

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  111. Cormier F, Monjanel H, Fabre C, Billot K, Sapharikas E, Chereau F, Bordereaux D, Molina TJ, Avet-Loiseau H, Baud V (2013) Frequent engagement of RelB activation is critical for cell survival in multiple myeloma. PLoS ONE 8(3):e59127. doi:10.1371/journal.pone.0059127

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  112. Landowski TH, Olashaw NE, Agrawal D, Dalton WS (2003) Cell adhesion-mediated drug resistance (CAM-DR) is associated with activation of NF-kappa B (RelB/p50) in myeloma cells. Oncogene 22(16):2417–2421. doi:10.1038/sj.onc.1206315

    Article  CAS  PubMed  Google Scholar 

  113. Dave SS, Wright G, Tan B, Rosenwald A, Gascoyne RD, Chan WC, Fisher RI, Braziel RM, Rimsza LM, Grogan TM, Miller TP, LeBlanc M, Greiner TC, Weisenburger DD, Lynch JC, Vose J, Armitage JO, Smeland EB, Kvaloy S, Holte H, Delabie J, Connors JM, Lansdorp PM, Ouyang Q, Lister TA, Davies AJ, Norton AJ, Muller-Hermelink HK, Ott G, Campo E, Montserrat E, Wilson WH, Jaffe ES, Simon R, Yang L, Powell J, Zhao H, Goldschmidt N, Chiorazzi M, Staudt LM (2004) Prediction of survival in follicular lymphoma based on molecular features of tumor-infiltrating immune cells. N Engl J Med 351(21):2159–2169. doi:10.1056/NEJMoa041869

    Article  CAS  PubMed  Google Scholar 

  114. dos Santos NR, Williame M, Gachet S, Cormier F, Janin A, Weih D, Weih F, Ghysdael J (2008) RelB-dependent stromal cells promote T-cell leukemogenesis. PLoS One 3(7):e2555. doi:10.1371/journal.pone.0002555

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  115. Herishanu Y, Perez-Galan P, Liu D, Biancotto A, Pittaluga S, Vire B, Gibellini F, Njuguna N, Lee E, Stennett L, Raghavachari N, Liu P, McCoy JP, Raffeld M, Stetler-Stevenson M, Yuan C, Sherry R, Arthur DC, Maric I, White T, Marti GE, Munson P, Wilson WH, Wiestner A (2011) The lymph node microenvironment promotes B-cell receptor signaling, NF-kappaB activation, and tumor proliferation in chronic lymphocytic leukemia. Blood 117(2):563–574. doi:10.1182/blood-2010-05-284984

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  116. Marienfeld R, May MJ, Berberich I, Serfling E, Ghosh S, Neumann M (2003) RelB forms transcriptionally inactive complexes with RelA/p65. J Biol Chem 278(22):19852–19860. doi:10.1074/jbc.M301945200

    Article  CAS  PubMed  Google Scholar 

  117. Gasparini C, Foxwell BM, Feldmann M (2013) RelB/p50 regulates TNF production in LPS-stimulated dendritic cells and macrophages. Cytokine 61(3):736–740. doi:10.1016/j.cyto.2012.12.029

    Article  CAS  PubMed  Google Scholar 

  118. Jacque E, Billot K, Authier H, Bordereaux D, Baud V (2012) RelB inhibits cell proliferation and tumor growth through p53 transcriptional activation. Oncogene. doi:10.1038/onc.2012.282

    PubMed  Google Scholar 

  119. Baldwin AS (2012) Regulation of cell death and autophagy by IKK and NF-kappaB: critical mechanisms in immune function and cancer. Immunol Rev 246(1):327–345. doi:10.1111/j.1600-065X.2012.01095.x

    Article  PubMed  CAS  Google Scholar 

  120. Johnson RF, Perkins ND (2012) Nuclear factor-kappaB, p53, and mitochondria: regulation of cellular metabolism and the Warburg effect. Trends Biochem Sci 37(8):317–324. doi:10.1016/j.tibs.2012.04.002

    Article  CAS  PubMed  Google Scholar 

  121. Secchiero P, Bosco R, Celeghini C, Zauli G (2011) Recent advances in the therapeutic perspectives of Nutlin-3. Curr Pharm Des 17(6):569–577. doi:10.2174/138161211795222586

    Article  CAS  PubMed  Google Scholar 

  122. Tergaonkar V, Pando M, Vafa O, Wahl G, Verma I (2002) p53 stabilization is decreased upon NFkappaB activation: a role for NFkappaB in acquisition of resistance to chemotherapy. Cancer Cell 1(5):493–503. doi:10.1016/S1535-6108(02)00068-5

    Article  CAS  PubMed  Google Scholar 

  123. Webster GA, Perkins ND (1999) Transcriptional cross talk between NF-kappaB and p53. Mol Cell Biol 19(5):3485–3495

    CAS  PubMed Central  PubMed  Google Scholar 

  124. Huang WC, Ju TK, Hung MC, Chen CC (2007) Phosphorylation of CBP by IKKalpha promotes cell growth by switching the binding preference of CBP from p53 to NF-kappaB. Mol Cell 26(1):75–87. doi:10.1016/j.molcel.2007.02.019

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  125. Fujioka S, Schmidt C, Sclabas GM, Li Z, Pelicano H, Peng B, Yao A, Niu J, Zhang W, Evans DB, Abbruzzese JL, Huang P, Chiao PJ (2004) Stabilization of p53 is a novel mechanism for proapoptotic function of NF-kappaB. J Biol Chem 279(26):27549–27559. doi:10.1074/jbc.M313435200

    Article  CAS  PubMed  Google Scholar 

  126. Shetty S, Graham BA, Brown JG, Hu X, Vegh-Yarema N, Harding G, Paul JT, Gibson SB (2005) Transcription factor NF-kappaB differentially regulates death receptor 5 expression involving histone deacetylase 1. Mol Cell Biol 25(13):5404–5416. doi:10.1128/MCB.25.13.5404- 5416.2005

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  127. Jacque E, Billot K, Authier H, Bordereaux D, Baud V (2013) RelB inhibits cell proliferation and tumor growth through p53 transcriptional activation. Oncogene 32(21):2661–2669. doi:10.1038/onc.2012.282

    Article  CAS  PubMed  Google Scholar 

  128. Schumm K, Rocha S, Caamano J, Perkins ND (2006) Regulation of p53 tumour suppressor target gene expression by the p52 NF-kappaB subunit. EMBO J 25(20):4820–4832. doi:10.1038/sj.emboj.7601343

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  129. Kiaris H, Chatzistamou I, Trimis G, Frangou-Plemmenou M, Pafiti-Kondi A, Kalofoutis A (2005) Evidence for nonautonomous effect of p53 tumor suppressor in carcinogenesis. Cancer Res 65(5):1627–1630. doi:10.1158/0008-5472.CAN-04-3791

    Article  CAS  PubMed  Google Scholar 

  130. Moskovits N, Kalinkovich A, Bar J, Lapidot T, Oren M (2006) p53 attenuates cancer cell migration and invasion through repression of SDF-1/CXCL12 expression in stromal fibroblasts. Cancer Res 66(22):10671–10676. doi:10.1158/0008-5472.CAN-06-2323

    Article  CAS  PubMed  Google Scholar 

  131. Baud V, Karin M (2009) Is NF-kappaB a good target for cancer therapy? Hopes and pitfalls. Nat Rev Drug Discov 8(1):33–40. doi:10.1038/nrd2781

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  132. Chu TC, Twu KY, Ellington AD, Levy M (2006) Aptamer mediated siRNA delivery. Nucleic Acids Res 34(10):e73. doi:10.1093/nar/gkl388

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  133. Gasparini C, Vecchi Brumatti L, Monasta L, Zauli G (2013) TRAIL-based therapeutic approaches for the treatment of pediatric malignancies. Curr Med Chem 20(17):2254–2271. doi:10.2174/0929867311320170009

    Article  CAS  PubMed  Google Scholar 

  134. Secchiero P, Zauli G (2008) Tumor-necrosis-factor-related apoptosis-inducing ligand and the regulation of hematopoiesis. Curr Opin Hematol 15(1):42–48. doi:10.1097/MOH.0b013e3282f15fa6

    Article  CAS  PubMed  Google Scholar 

  135. Secchiero P, Melloni E, Corallini F, Beltrami AP, Alviano F, Milani D, D’Aurizio F, di Iasio MG, Cesselli D, Bagnara GP, Zauli G (2008) Tumor necrosis factor-related apoptosis-inducing ligand promotes migration of human bone marrow multipotent stromal cells. Stem Cells 26(11):2955–2963. doi:10.1634/stemcells.2008-0512

    Article  CAS  PubMed  Google Scholar 

  136. Secchiero P, di Iasio MG, Gonelli A, Zauli G (2008) The MDM2 inhibitor Nutlins as an innovative therapeutic tool for the treatment of haematological malignancies. Curr Pharm Des 14(21):2100–2110. doi:10.2174/138161208785294663

    Article  CAS  PubMed  Google Scholar 

  137. Secchiero P, Zerbinati C, Melloni E, Milani D, Campioni D, Fadda R, Tiribelli M, Zauli G (2007) The MDM-2 antagonist nutlin-3 promotes the maturation of acute myeloid leukemic blasts. Neoplasia 9(10):853–861. doi:10.1593/neo.07523

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  138. Secchiero P, Melloni E, di Iasio MG, Tiribelli M, Rimondi E, Corallini F, Gattei V, Zauli G (2009) Nutlin-3 up-regulates the expression of Notch1 in both myeloid and lymphoid leukemic cells, as part of a negative feedback antiapoptotic mechanism. Blood 113(18):4300–4308. doi:10.1182/blood-2008-11-187708

    Article  CAS  PubMed  Google Scholar 

  139. Secchiero P, Corallini F, Rimondi E, Chiaruttini C, di Iasio MG, Rustighi A, Del Sal G, Zauli G (2008) Activation of the p53 pathway down-regulates the osteoprotegerin expression and release by vascular endothelial cells. Blood 111(3):1287–1294. doi:10.1182/blood-2007-05-092031

    Article  CAS  PubMed  Google Scholar 

  140. Zauli G, Melloni E, Capitani S, Secchiero P (2009) Role of full-length osteoprotegerin in tumor cell biology. Cell Mol Life Sci 66(5):841–851. doi:10.1007/s00018-008-8536-x

    Article  CAS  PubMed  Google Scholar 

  141. Gasparini C, Tommasini A, Zauli G (2012) The MDM2 inhibitor Nutlin-3 modulates dendritic cell-induced T cell proliferation. Hum Immunol 73(4):342–345. doi:10.1016/j.humimm.2012.01.018

    Article  CAS  PubMed  Google Scholar 

  142. Travert M, Ame-Thomas P, Pangault C, Morizot A, Micheau O, Semana G, Lamy T, Fest T, Tarte K, Guillaudeux T (2008) CD40 ligand protects from TRAIL-induced apoptosis in follicular lymphomas through NF-kappaB activation and up-regulation of c-FLIP and Bcl-xL. J Immunol 181(2):1001–1011

    Article  CAS  PubMed  Google Scholar 

  143. Rosati E, Sabatini R, Rampino G, Tabilio A, Di Ianni M, Fettucciari K, Bartoli A, Coaccioli S, Screpanti I, Marconi P (2009) Constitutively activated Notch signaling is involved in survival and apoptosis resistance of B-CLL cells. Blood 113(4):856–865. doi:10.1182/blood-2008-02-139725

    Article  CAS  PubMed  Google Scholar 

  144. Hertlein E, Byrd JC (2010) Signalling to drug resistance in CLL. Best Prac Res Clin Haematol 23(1):121–131. doi:10.1016/j.beha.2010.01.007

    Article  CAS  Google Scholar 

  145. Romano MF, Lamberti A, Tassone P, Alfinito F, Costantini S, Chiurazzi F, Defrance T, Bonelli P, Tuccillo F, Turco MC, Venuta S (1998) Triggering of CD40 antigen inhibits fludarabine-induced apoptosis in B chronic lymphocytic leukemia cells. Blood 92(3):990–995

    CAS  PubMed  Google Scholar 

  146. Perez LE, Parquet N, Meads M, Anasetti C, Dalton W (2010) Bortezomib restores stroma-mediated APO2L/TRAIL apoptosis resistance in multiple myeloma. Eur J Haematol 84(3):212–222. doi:10.1111/j.1600-0609.2009.01381.x

    Article  CAS  PubMed  Google Scholar 

  147. Jin L, Tabe Y, Kojima K, Zhou Y, Pittaluga S, Konopleva M, Miida T, Raffeld M (2010) MDM2 antagonist Nutlin-3 enhances bortezomib-mediated mitochondrial apoptosis in TP53-mutated mantle cell lymphoma. Cancer Lett 299(2):161–170. doi:10.1016/j.canlet.2010.08.015

    Article  CAS  PubMed  Google Scholar 

  148. Saha MN, Jiang H, Jayakar J, Reece D, Branch DR, Chang H (2010) MDM2 antagonist nutlin plus proteasome inhibitor velcade combination displays a synergistic anti-myeloma activity. Cancer Biol Ther 9(11):936–944. doi:10.4161/cbt.9.11.11882

    Article  CAS  PubMed  Google Scholar 

  149. Ooi MG, Hayden PJ, Kotoula V, McMillin DW, Charalambous E, Daskalaki E, Raje NS, Munshi NC, Chauhan D, Hideshima T, Buon L, Clynes M, O’Gorman P, Richardson PG, Mitsiades CS, Anderson KC, Mitsiades N (2009) Interactions of the Hdm2/p53 and proteasome pathways may enhance the antitumor activity of bortezomib. Clin Cancer Res 15(23):7153–7160. doi:10.1158/1078-0432.CCR-09-1071

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  150. Conticello C, Adamo L, Vicari L, Giuffrida R, Iannolo G, Anastasi G, Caruso L, Moschetti G, Cupri A, Palumbo GA, Gulisano M, De Maria R, Giustolisi R, Di Raimondo F (2008) Antitumor activity of bortezomib alone and in combination with TRAIL in human acute myeloid leukemia. Acta Haematol 120(1):19–30. doi:10.1159/000151511

    Article  CAS  PubMed  Google Scholar 

  151. Kabore AF, Sun J, Hu X, McCrea K, Johnston JB, Gibson SB (2006) The TRAIL apoptotic pathway mediates proteasome inhibitor induced apoptosis in primary chronic lymphocytic leukemia cells. Apoptosis 11(7):1175–1193. doi:10.1007/s10495-006-8048-9

    Article  CAS  PubMed  Google Scholar 

  152. Di Pietro R, Zauli G (2004) Emerging non-apoptotic functions of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)/Apo2L. J Cell Physiol 201(3):331–340. doi:10.1002/jcp.20099

    Article  PubMed  CAS  Google Scholar 

  153. Zauli G, Sancilio S, Cataldi A, Sabatini N, Bosco D, Di Pietro R (2005) PI-3K/Akt and NF-kappaB/IkappaBalpha pathways are activated in Jurkat T cells in response to TRAIL treatment. J Cell Physiol 202(3):900–911. doi:10.1002/jcp.20202

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Fabio Rosso for the artwork of this review.

Conflict of interest

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiara Gasparini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gasparini, C., Celeghini, C., Monasta, L. et al. NF-κB pathways in hematological malignancies. Cell. Mol. Life Sci. 71, 2083–2102 (2014). https://doi.org/10.1007/s00018-013-1545-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-013-1545-4

Keywords

Navigation