Skip to main content
Log in

A mod Atkin–Lehner theorem and applications

  • Published:
Archiv der Mathematik Aims and scope Submit manuscript

Abstract

If f(z) is a weight \({k\in \frac{1}{2}\mathbb {Z}}\) meromorphic modular form on Γ0(N) satisfying

$$f(z)=\sum_{n\geq n_0} a_ne^{2\pi i mnz}, $$

where \({m \nmid N,}\) then f is constant. If k ≠ 0, then f = 0. Atkin and Lehner [2] derived the theory of integer weight newforms from this fact. We use the geometric theory of modular forms to prove the analog of this fact for modular forms modulo . We show that the same conclusion holds if gcd(N ,m) = 1 and the nebentypus character is trivial at . We use this to study the parity of the partition function and the coefficients of Klein’s j-function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Alfes, Parity of the coefficients of Klein’s j-function, Proc. Amer. Math. Soc., in press.

  2. A. O. L. Atkin and J. Lehner, Hecke operators on Γ0(m), Math. Ann. 185 (1970), pages 134–160.

    Google Scholar 

  3. Bruinier J. H., Ono K.: Heegner divisors, L-functions, and harmonic weak Maass forms. Ann. Math 172, 2135–2181 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  4. Conrad B.: Arithmetic moduli of generalized elliptic curves. J. Inst. Math. Jussieu 6, 209–278 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  5. N. M. Katz, p-adic properties of modular schemes and modular forms, in Modular functions of one variable, III (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972), pages 69–190. Lecture Notes in Mathematics, Vol. 350. Springer, Berlin, 1973.

  6. N. M. Katz and B. Mazur, Arithmetic moduli of elliptic curves, volume 108 of Annals of Mathematics Studies, Princeton University Press, Princeton, NJ, 1985.

  7. Mazur B.: Modular curves and the Eisenstein ideal, Inst. Hautes Études Sci. Publ. Math. No 47, 33–186 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  8. Ono K.: Parity of the partition function in arithmetic progressions. J. Reine Angew. Math 472, 1–15 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  9. Ono K.: The parity of the partition function. Adv. Math. 225, 349–366 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  10. Parkin T.R., Shanks D.: On the distribution of parity in the partition function. Math. Comp 21, 466–480 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  11. S. Radu, A proof of Subbarao’s conjecture, J. reine Angew. Math., in press.

  12. Subbarao M.: Some remarks on the partition function. Amer. Math. Monthly 73, 851–854 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  13. D. Zagier, Traces of singular moduli, Motives, polylogarithms and Hodge theory, Part I. Intl. Press, Somerville (2002), 211–244.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken Ono.

Additional information

The first author is grateful for support from the NSF and the Asa Griggs Candler Fund.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ono, K., Ramsey, N. A mod Atkin–Lehner theorem and applications. Arch. Math. 98, 25–36 (2012). https://doi.org/10.1007/s00013-011-0347-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00013-011-0347-x

Keywords

Navigation