Skip to main content

Advertisement

Log in

Inhibitory effects of erythromycin on wear debris-induced VEGF/Flt-1 gene production and osteolysis

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objectives

A highly vascularized and inflammatory periprosthetic tissue augments the progress of aseptic loosening, a major clinical problem after total joint replacement. The purpose of this study is to investigate the effect of erythromycin (EM) on ultra high molecular weight polyethylene (UHMWPE) particle-induced VEGF/VEGF receptor 1 (Flt-1) gene production and inflammatory osteolysis in a mouse model.

Methods

UHMWPE particles were introduced into established air pouches on BALB/c mice, followed by implantation of calvaria bone from syngeneic littermates. EM treatment started 2 weeks after bone implantation (5 mg/kg day, i.p. injection). Mice without drug treatment as well as mice injected with saline alone were included. Pouch tissues were harvested 2 weeks after bone implantation. Expression of VEGF, Flt-1, RANKL, IL-1, TNF and CD68 was measured by immunostain and RT-PCR, and implanted bone resorption was analyzed by micro-CT (μCT).

Results

Exposure to UHMWPE induced pouch tissue inflammation, increase of VEGF/Flt-1 proteins, and increased bone resorption. EM treatment significantly improved UHMWPE particle-induced tissue inflammation, reduced VEGF/Flt-1 protein expression, and diminished the number of TRAP+ cells, as well as the implanted bone resorption.

Conclusion

This study demonstrated that EM inhibited VEGF and Flt-1 gene expression. The molecular mechanism of EM action on VEGF/Flt-1 signaling-mediated osteoclastogenesis warrants further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

VEGF:

Vascular endothelial growth factor

EM:

Erythromycin

Flt-1:

VEGF receptor I

FLK:

VEGF receptor II

RANK:

Receptor activator of NF-κB

RANKL:

RANK ligand

TNF:

Tumor necrosis factor

IL-1:

Interleukin-1

TRAP:

Tartrate-resistant acid phosphatase

AL:

Aseptic loosening

References

  1. Berry DJ, Harmsen WS, Cabanela ME, Morrey BF. Twenty-five-year survivorship of two thousand consecutive primary Charnley total hip replacements: factors affecting survivorship of acetabular and femoral components. J Bone Joint Surg Am. 2002;84(2):171–7.

    PubMed  Google Scholar 

  2. Al Saffar N, Mah JT, Kadoya Y, Revell PA. Neovascularisation and the induction of cell adhesion molecules in response to degradation products from orthopaedic implants. Ann Rheum Dis. 1995;54(3):201–8.

    Article  PubMed  CAS  Google Scholar 

  3. Ritchlin CT, Schwarz EM, O’Keefe RJ, Looney RJ. RANK, RANKL and OPG in inflammatory arthritis and periprosthetic osteolysis. J Musculoskelet Neuronal Interact. 2004;4(3):276–84.

    PubMed  CAS  Google Scholar 

  4. Niida S, Kaku M, Amano H, Yoshida H, Kataoka H, Nishikawa S, et al. Vascular endothelial growth factor can substitute for macrophage colony-stimulating factor in the support of osteoclastic bone resorption. J Exp Med. 1999;190(2):293–8.

    Article  PubMed  CAS  Google Scholar 

  5. Kaku M, Kohno S, Kawata T, Fujita I, Tokimasa C, Tsutsui K, et al. Effects of vascular endothelial growth factor on osteoclast induction during tooth movement in mice. J Dent Res. 2001;80(10):1880–3.

    Article  PubMed  CAS  Google Scholar 

  6. Nakagawa M, Kaneda T, Arakawa T, Morita S, Sato T, Yomada T, et al. Vascular endothelial growth factor (VEGF) directly enhances osteoclastic bone resorption and survival of mature osteoclasts. FEBS Lett. 2000;473(2):161–4.

    Article  PubMed  CAS  Google Scholar 

  7. Jell GMR, Al-Saffar N. Does a pro-angiogenic state exist in the bone-implant interface of aseptically loosened joint prosthesis? J Mater Sci: Mater Med. 2001;12:1069–73.

    Article  CAS  Google Scholar 

  8. Waltenberger J, Claesson-Welsh L, Siegbahn A, Shibuya M, Heldin CH. Different signal transduction properties of KDR and Flt1, two receptors for vascular endothelial growth factor. J Biol Chem. 1994;269(43):26988–95.

    PubMed  CAS  Google Scholar 

  9. Ren WP, Yang S, Wooley PH. A novel murine model of orthopaedic wear debris-associated osteolysis. Scand J Rheumatol. 2004;33:349–57.

    Article  PubMed  CAS  Google Scholar 

  10. Ren W, Zhang R, Markel DC, Wu B, Peng X, Hawkins M, et al. Blockade of vascular endothelial growth factor activity suppresses wear debris-induced inflammatory osteolysis. J Rheumatol. 2007;34(1):27–35.

    PubMed  CAS  Google Scholar 

  11. Ren WP, Markel DC, Zhang R, Peng X, Wu B, Monica H, et al. Association between UHMWPE particle-induced inflammatory osteoclastogenesis and expression of RANKL, VEGF, and Flt-1 in vivo. Biomaterials. 2006;27(30):5161–9.

    Article  PubMed  CAS  Google Scholar 

  12. Shinkai M, Henke MO, Rubin BK. Macrolide antibiotics as immunomodulatory medications: proposed mechanisms of action. Pharmacol Ther. 2008;117(3):393–405.

    Article  PubMed  CAS  Google Scholar 

  13. Giamarellos-Bourboulis EJ. Macrolides beyond the conventional antimicrobials: a class of potent immunomodulators. Int J Antimicrob Agents. 2008;31(1):12–20.

    Article  PubMed  CAS  Google Scholar 

  14. Cervin A. The anti-inflammatory effect of erythromycin and its derivatives, with special reference to nasal polyposis and chronic sinusitis. Acta Otolaryngol. 2001;121(1):83–92.

    Article  PubMed  CAS  Google Scholar 

  15. Ren WP, Bin W, Mayton L, Wooley PH. Erythromycin (EM) inhibits wear debris-induced inflammatory osteolysis in a murine model. J Orthop Res. 2006;24:280–90.

    Article  PubMed  CAS  Google Scholar 

  16. Ren WP, Li XY, Chen BD, Wooley PH. Erythromycin inhibits wear debris-induced osteoclastogenesis by modulation of murine macrophage NFkB activity. J Orthop Res. 2004;22:21–9.

    Article  PubMed  CAS  Google Scholar 

  17. Meghari S, Rolain JM, Grau GE, Platt E, Barrassi L, Mege JL, et al. Antiangiogenic effect of erythromycin: an in vitro model of Bartonella quintana infection. J Infect Dis. 2006;193(3):380–6.

    Article  PubMed  CAS  Google Scholar 

  18. Yatsunami J, Hayashi S. Fourteen-membered ring macrolides as anti-angiogenic compounds. Anticancer Res. 2001;21(6B):4253–8.

    PubMed  CAS  Google Scholar 

  19. Bi Y, van de Motter RR, Ragab AA, Goldberg VM, Greenfield EM. The role of adherent endotoxin in stimulation of osteoclast differentiation by orthopaedic wear particles. Trans Orthop Res Soc. 1999;45:5.

    Google Scholar 

  20. Wooley PH, Morren R, Andary J, Sud S, Yang SY, Mayton L, et al. Inflammatory responses to orthopaedic biomaterials in the murine air pouch. Biomaterials. 2002;23(2):517–26.

    Article  PubMed  CAS  Google Scholar 

  21. Ren WP, Wu B, Mayton L, Wooley PH. Polyethylene and methyl methacrylate particle-stimulated inflammatory tissue and macrophages up-regulate bone resorption in a murine neonatal bone resorption in a murine neonatal calvaria in vitro organ system. J Orthop Res. 2002;20:1031–7.

    Article  PubMed  CAS  Google Scholar 

  22. Yang SY, Ren W, Park Y, Sieving A, Hsu S, Nasser S, et al. Diverse cellular and apoptotic responses to variant shapes of UHMWPE particles in a murine model of inflammation. Biomaterials. 2002;23(17):3535–43.

    Article  PubMed  CAS  Google Scholar 

  23. Miyanishi K, Trindade MC, Ma T, Goodman SB, Schurman DJ, Smith RL. Periprosthetic osteolysis: induction of vascular endothelial growth factor from human monocyte/macrophages by orthopaedic biomaterial particles. J Bone Miner Res. 2003;18(9):1573–83.

    Article  PubMed  CAS  Google Scholar 

  24. Gallo J, Kaminek P, Ticha V, Rihakova P, Ditmar R. Particle disease. A comprehensive theory of periprosthetic osteolysis: a review. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2002;146(2):21–8.

    PubMed  Google Scholar 

  25. Jones LC, Frondoza C, Hungerford DS. Immunohistochemical evaluation of interface membranes from failed cemented and uncemented acetabular components. J Biomed Mater Res. 1999;48(6):889–98.

    Article  PubMed  CAS  Google Scholar 

  26. Goodsell DS. The molecular perspective: VEGF and angiogenesis. Oncologist. 2002;7(6):569–70.

    Article  PubMed  Google Scholar 

  27. Ikeda M, Hosoda Y, Hirose S, Okada Y, Ikeda E. Expression of vascular endothelial growth factor isoforms and their receptors Flt-1, KDR, and neuropilin-1 in synovial tissues of rheumatoid arthritis. J Pathol. 2000;191(4):426–33.

    Article  PubMed  CAS  Google Scholar 

  28. De Bandt M, Ben Mahdi MH, Ollivier V, Grossin M, Dupuis M, Gaudry M, et al. Blockade of vascular endothelial growth factor receptor I (VEGF-RI), but not VEGF-RII, suppresses joint destruction in the K/BxN model of rheumatoid arthritis. J Immunol. 2003;171(9):4853–9.

    PubMed  Google Scholar 

  29. Fava RA, Olsen NJ, Spencer-Green G, Yeo KT, Yeo TK, Berse B, et al. Vascular permeability factor/endothelial growth factor (VPF/VEGF): accumulation and expression in human synovial fluids and rheumatoid synovial tissue. J Exp Med. 1994;180(1):341–6.

    Article  PubMed  CAS  Google Scholar 

  30. Kunstfeld R, Hirakawa S, Hong YK, Schacht V, Lange-Asschenfeldt B, Velasco P, et al. Induction of cutaneous delayed-type hypersensitivity reactions in VEGF-A transgenic mice results in chronic skin inflammation associated with persistent lymphatic hyperplasia. Blood. 2004;104(4):1048–57.

    Article  PubMed  CAS  Google Scholar 

  31. Haywood L, McWilliams DF, Pearson CI, Gill SE, Ganesan A, Wilson D, et al. Inflammation and angiogenesis in osteoarthritis. Arthritis Rheum. 2003;48(8):2173–7.

    Article  PubMed  CAS  Google Scholar 

  32. Xia YP, Li B, Hylton D, Detmar M, Yancopoulos GD, Rudge JS. Transgenic delivery of VEGF to mouse skin leads to an inflammatory condition resembling human psoriasis. Blood. 2003;102(1):161–8.

    Article  PubMed  CAS  Google Scholar 

  33. Luttun A, Tjwa M, Carmeliet P. Placental growth factor (PlGF) and its receptor Flt-1 (VEGFR-1): novel therapeutic targets for angiogenic disorders. Ann NY Acad Sci. 2002;979:80–93.

    Article  PubMed  CAS  Google Scholar 

  34. Ben Av P, Crofford LJ, Wilder RL, Hla T. Induction of vascular endothelial growth factor expression in synovial fibroblasts by prostaglandin E and interleukin-1: a potential mechanism for inflammatory angiogenesis. FEBS Lett. 1995;372(1):83–7.

    Article  PubMed  CAS  Google Scholar 

  35. Paleolog EM, Young S, Stark AC, McCloskey RV, Feldmann M, Maini RN. Modulation of angiogenic vascular endothelial growth factor by tumor necrosis factor alpha and interleukin-1 in rheumatoid arthritis. Arthritis Rheum. 1998;41(7):1258–65.

    Article  PubMed  CAS  Google Scholar 

  36. Kato T, Haro H, Komori H, Shinomiya K. Sequential dynamics of inflammatory cytokine, angiogenesis inducing factor and matrix degrading enzymes during spontaneous resorption of the herniated disc. J Orthop Res. 2004;22(4):895–900.

    Article  PubMed  CAS  Google Scholar 

  37. Min JK, Kim YM, Kim YM, Kim EC, Gho YS, Kang IJ, et al. Vascular endothelial growth factor up-regulates expression of receptor activator of NF-kappa B (RANK) in endothelial cells. Concomitant increase of angiogenic responses to RANK ligand. J Biol Chem. 2003;278(41):39548–57.

    Article  PubMed  CAS  Google Scholar 

  38. Kodama I, Niida S, Sanada M, Yoshiko Y, Tsuda M, Maeda N, et al. Estrogen regulates the production of VEGF for osteoclast formation and activity in op/op mice. J Bone Miner Res. 2004;19(2):200–6.

    Article  PubMed  CAS  Google Scholar 

  39. Sawano A, Iwai S, Sakurai Y, Ito M, Shitara K, Nakahata T, et al. Flt-1, vascular endothelial growth factor receptor 1, is a novel cell surface marker for the lineage of monocyte–macrophages in humans. Blood. 2001;97(3):785–91.

    Article  PubMed  CAS  Google Scholar 

  40. Arras M, Ito WD, Scholz D, Winkler B, Schaper J, Schaper W. Monocyte activation in angiogenesis and collateral growth in the rabbit hindlimb. J Clin Invest. 1998;101(1):40–50.

    Article  PubMed  CAS  Google Scholar 

  41. Childs LM, Goater JJ, O’Keefe RJ, Schwarz EM. Efficacy of etanercept for wear debris-induced osteolysis. J Bone Miner Res. 2001;16(2):338–47.

    Article  PubMed  CAS  Google Scholar 

  42. Barleon B, Sozzani S, Zhou D, Weich HA, Mantovani A, Marme D. Migration of human monocytes in response to vascular endothelial growth factor (VEGF) is mediated via the VEGF receptor flt-1. Blood. 1996;87(8):3336–43.

    PubMed  CAS  Google Scholar 

  43. Matsumoto Y, Tanaka K, Hirata G, Hanada M, Matsuda S, Shuto T, et al. Possible involvement of the vascular endothelial growth factor-Flt-1-focal adhesion kinase pathway in chemotaxis and the cell proliferation of osteoclast precursor cells in arthritic joints. J Immunol. 2002;168(11):5824–31.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This study was supported by a grant from Stryker Orthopedics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiping Ren.

Additional information

Responsible Editor: M. Parnham.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Markel, D.C., Zhang, R., Shi, T. et al. Inhibitory effects of erythromycin on wear debris-induced VEGF/Flt-1 gene production and osteolysis. Inflamm. Res. 58, 413–421 (2009). https://doi.org/10.1007/s00011-009-0007-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-009-0007-9

Keywords

Navigation