Skip to main content
Log in

Oxidative neuropathology and putative chemical entities for alzheimer’s disease: Neuroprotective effects of salen-manganese catalytic anti-oxidants

  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Considerable evidence exists that the brains of individuals with Alzheimer’s disease are subject to elevated levels of oxidative stress, particularly in regions exhibiting pathological damage. A major contributor to this oxidative stress appears to be the inflammatory process. Activation of rodent microglial cells by LPS or β-amyloid peptide results in a marked up-regulation of inducible nitric oxide synthase (iNOS) and corresponding nitric oxide (NO) production. Elevated levels of iNOS are also observed in the brains of Alzheimer patients. The reaction of NO with superoxide leads to the generation of the highly reactive and damaging peroxynitrite free radical species. Peroxynitrite appears to play a key role in the generation of an oxidative stress in the Alzheimer brain as evidenced by widespread nitrotyrosine immunoreactivity. We have employed SIN-1 as a peroxynitrite generating system in cell cultures in order to characterise the effects of this free radical on neurons. SIN-1 treatment of primary rat hippocampal neurons in culture results in neurotoxicity by a necrosis mechanism according to electron microscopic criteria. One approach to limiting peroxynitrite mediated damage is to limit superoxide production. An approach we have evaluated is treatment with salen manganese compounds, a class of catalytic antioxidant compounds which behave as superoxide dismutase (SOD)/catalase mimetics to detoxify superoxide. A number of such salen manganese compounds, including EUK-8 and EUK-134, can markedly protect primary rat cortical neurons from hydrogen peroxide mediated oxidative stress. Such salen manganese compounds can similarly afford marked neuroprotection to an oxidative stress imposed by SIN-1, potentially attributable at least in part to their inherent SOD activity. The salen manganese SOD/catalase mimetics represent a promising class of catalytic antioxidant for attenuating oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akama, K.T., Albanese, C., Pestell, R.G. and Van Eldik, L.J. (1998) Amyloid-β peptide stimulates nitric oxide production in astrocytes through an NFκB-dependent mechanism.Proceedings of the National Academy of Sciences USA,95, 5795–5800.

    Article  CAS  Google Scholar 

  • Anderson, I.K., Soden, P.E., Barnes, J.C. and Rupniak, H.T.R. (1998) β-Amyloid induces cyclooxygenase-2 and inducible nitric oxide synthase in microglial cells.British Journal of Pharmacology, 123, 304P.

  • Ando, Y., Brannstrom, T., Uchida, K., Nyhlin, N., Nasman, B., Suhr, O., Yamashita, T., Olsson, T., El Sally, M., Uchino, M. and Ando, M. (1998) Histochemical detection of 4- hydroxynonenal protein in Alzheimer’s disease.Journal of Neurological Sciences,156, 172–176.

    Article  CAS  Google Scholar 

  • Baker, K., Marcus, C.B., Huffman, K., Kruk, H., Malfroy, B. and Doctrow, S. (1998) Synthetic combined superoxide dismutase/catalase mimetics are protective in a rat stroke model: a key role for reactive oxygen species in ischemic brain injury.Journal of Pharmacology and Experimental Therapeutics,284, 215–221.

    PubMed  CAS  Google Scholar 

  • Bolanos, J.P., Heales, S.J., Land, J.M. and Clark, J.B. (1995) Effect of peroxynitrite on the mitochondrial respiratory chain: differential susceptibility of neurones and astrocytes in primary culture.Journal of Neurochemistry,64, 1965–1972.

    PubMed  CAS  Google Scholar 

  • Bonfoco, E., Krainc, D., Ankarcrona, M., Nicotera, P. and Lipton, S.A. (1995) Apoptosis and necrosis: two distinct events induced, respectively, by mild and intense insults with N-methyl-D-aspartate or nitic oxide/superoxide in cortical cell cultures.Proceedings of the National Academy of Sciences USA,92, 7162–7166.

    Article  CAS  Google Scholar 

  • Bruce, A.J., Malfroy, B. and Baudry, M. (1996) b-Amyloid toxicity in organotypic hippocampal cultures: protection by EUK-8, a synthetic catalytic free radical scavenger.Proceedings of the National Academy of Sciences USA,93, 2312–2316.

    Article  CAS  Google Scholar 

  • Colton, C., Wilt, S., Gilbert, D., Chernyshev, O., Snell, J. and Dubois-Dalcq, M. (1996) Species differences in the generation of reactive oxygen species by microglia.Molecular and Chemical Neuropathology,28, 15–20.

    Article  PubMed  CAS  Google Scholar 

  • Dawson, V.L. and Dawson, T.M. (1996) Nitric oxide neurotoxicity.Journal of Chemical Neuroanatomy,10, 179–190.

    Article  PubMed  CAS  Google Scholar 

  • El Khoury, J., Hickman, S.E., Thomas, C.A., Cao, L., Silverstein, S.C. and Loike, J.D. (1996) Scavenger receptormediated adhesion of microglia to beta-amyloid fibrils.Nature,382, 716–719.

    Article  PubMed  Google Scholar 

  • Ferrer-Sueta, G., Batinic-Haberle, I., Spasojevic, I., Fridovich, I. and Radi, R. (1999) Catalytic scavenging of peroxynitrite by isomeric Mn(III) N-methylpyridylporphyrins in the presence of reductants.Chemical Research in Toxicology,12, 442–449.

    Article  PubMed  CAS  Google Scholar 

  • Fukuda, T., Wang, H., Nakanishi, H., Yamamoto, K. and Kosaka, T. (1999) Novel non-apoptotic morphological changes in neurons of the mouse hippocampus following transient hypoxic-ischemia.Neuroscience Research,33, 49–55.

    Article  PubMed  CAS  Google Scholar 

  • Giulian, D. and Baker, T.J. (1986) Characterization of ameboid microglia isolated from developing mammalian brain.Journal of Neuroscience,6, 2163–2178.

    PubMed  CAS  Google Scholar 

  • Good, P.F., Werner, P., Hsu, A., Olanow, C.W. and Perl, D.P. (1996) Evidence of neuronal oxidative damage in Alzheimer’s disease.American Journal of Pathology,149, 21–28.

    PubMed  CAS  Google Scholar 

  • Hensley, K., Maidt, M.L., Yu, Z., Sang, H., Markesbury, W.R. and Floyd, R.A. (1998) Electrochemical analysis of protein nitrotyrosine and dityrosine in the Alzheimer brain indicates region-specific accumulation.Journal of Neuroscience,18, 8126–8132.

    PubMed  CAS  Google Scholar 

  • Hu, J., Akama, K.T., Krafft, G.A., Chromy, B.A. and Van Eldik (1998) Amyloid-β peptide activates cultured astrocytes: morphological alterations, cytokine induction and nitric oxide release.Brain Research,785, 195–206.

    Article  PubMed  CAS  Google Scholar 

  • Koh, J.Y., Wie, M.B., Gwag, B.J., Sensi, S.L., Canzoniero, L.M., Demaro, J., Csernansky, C. and Choi, D.W. (1995) Stauro- sporine-induced neuronal apoptosis.Experimental Neurology,135, 153–159.

    Article  PubMed  CAS  Google Scholar 

  • Lafon-Cazal, M., Pietri, S., Culcasi, M. and Bockaert, J. (1993) NMDA-dependent superoxide production and neurotoxicity.Nature,364, 535–537.

    Article  PubMed  CAS  Google Scholar 

  • Lipton, S.A., Choi, Y.B., Pan, Z.H., Lei, S.Z., Chen, H.V., Sucher, N.J., Loscalzo, J., Singel, D.J. and Stamler, J.S. (1993) A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds.Nature,364, 626–632.

    Article  PubMed  CAS  Google Scholar 

  • Lizasoain, I., Moro, M. A., Knowles, R.G., Darley-Usmar, V. and Moncada, S. (1996) Nitric oxide and peroxynitrite exert distinct effects on mitochondrial respiration which are differentially blocked by glutathione or glucose.Biochemical Journal,314, 877–880.

    PubMed  CAS  Google Scholar 

  • Markesbery, W.R. and Carney, J.M. (1999) Oxidative alterations in Alzheimer’s disease.Brain Pathology,9, 133–146.

    PubMed  CAS  Google Scholar 

  • Mattson, M.P., Goodman, Y, Luo, H., Fu, W. and Furukawa, K. (1997) Activation of NFkB protects hippocampal neurons against oxidative stress-induced apoptosis.Journal of Neuroscience Research,49, 681–697.

    Article  PubMed  CAS  Google Scholar 

  • McCord, J.M. and Fridovich, I. (1969) Superoxide dismutase: an enzymic function for erythrocuprein (hemocuprein).Journal of Biological Chemistry,244, 6049–6055.

    PubMed  CAS  Google Scholar 

  • McGeer, PL. and McGeer, E.G. (1995) The inflammatory response system of the brain: implications for therapy of Alzheimer and other neurodegenerative diseases.Brain Research Reviews,21, 195–218.

    Article  PubMed  CAS  Google Scholar 

  • Mecocci, P., MacGarvey, U. and Beal, M.F. (1994) Oxidative damage to mitochondrial DNA is increased in Alzheimer’s disease.Annals of Neurology,36, 747–751.

    Article  PubMed  CAS  Google Scholar 

  • Meda, L., Cassatella, M.A., Szendrei, G.I., Otvos, L., Baron, P., Villalba, M., Ferrari, D. and Rossi, F. (1995) Activation of microglial cells by β-amyloid protein and interferon-γ.Nature,374, 647–650.

    Article  PubMed  CAS  Google Scholar 

  • Montine, K.S., Kim, P.J., Olson, S.J., Markesbury, W.R. and Montine, T.J. (1997) 4-hydroxy-2-nonenal pyrrole adducts in human neurodegenerative disease.Journal of Neuropathology and Experimental Neurology,56, 866–871.

    Article  PubMed  CAS  Google Scholar 

  • Mullaart, E., Boerrigter, M.E.T., Ravid, R., Swaab, D.F. and Vijg, J. (1990) Increased levels of DNA breaks in cerebral cortex of Alzheimer’s disease patients.Neurobiology of Aging,11, 169–173.

    Article  PubMed  CAS  Google Scholar 

  • Palmer, A.M. and Burns, M.A. (1994) Selective increase in lipid peroxidation in the inferior temporal cortex in Alzheimer’s disease.Brain Research,645, 338–342.

    Article  PubMed  CAS  Google Scholar 

  • Perry, J.M. and Marietta, M.A. (1998) Effects of transition metals on nitric oxide synthase catalysis.Proceedings of the National Academy of Sciences USA,95, 11101–11106.

    Article  CAS  Google Scholar 

  • Pou, S., Keaton, L., Surichamorn, W. and Rosen, G.M. (1999) Mechanism of superoxide generation by neuronal nitric oxide synthase.Journal of Biological Chemistry,274, 9573–9580.

    Article  PubMed  CAS  Google Scholar 

  • Prehn, J.H., Jordan, J., Ghadge, G.D., Preis, E., Galindo, M.F, Roos, R.P., Krieglstein, J. and Miller, R.J. (1997) Ca2+ and reactive oxygen species in staurosporine-induced neuronal apoptosis.Journal of Neurochemistry,68, 1679–1685.

    Article  PubMed  CAS  Google Scholar 

  • Rong, Y., Doctrow, S.R., Tocco, G. and Baudry, M. (1999) EUK- 134, a synthetic superoxide dismutase and catalase mimetic, prevents oxidative stress and attenuates kainate-induced neuropathology.Proceedings of the National Academy of Sciences USA,96, 9897–9902.

    Article  CAS  Google Scholar 

  • Sano, M., Ernesto, C., Thomas, R.G., Klauber, M.R., Schafer, K., Grundman, M., Woodbury, P., Growdon, J., Cotman, C.W., Pfeiffer, E., Schneider, L.S. and Thai, L.J. (1997) A controlled trial of selegiline, alpha-tocopherol or both as treatment for Alzheimer’s disease.New England Journal of Medicine,336, 1216–1222.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt, H.H., Hofmann, H., Schindler, U., Shutenko, Z.S., Cunningham, D.D. and Feelisch, M. (1996) No NO from NO synthase.Proceedings of the National Academy of Sciences USA,93, 14492–14497.

    Article  CAS  Google Scholar 

  • Schulz, J.B., Matthews, R.T. and Beal, M.F. (1995) Role of nitric oxide in neurodegenerative diseases.Current Opinion in Neurology,8, 480–486.

    Article  PubMed  CAS  Google Scholar 

  • Smith, CD., Carney, J.M., Starke-Reed, P.E., Oliver, C.N., Stadtman, E.R., Floyd, R.A. and Markesbery, W.R. (1991) Excess brain protein oxidation and enzyme dysfunction in normal aging and in Alzheimer’s disease.Proceedings of the National Academy of Sciences USA,88, 10540–10543.

    Article  CAS  Google Scholar 

  • Smith, M.A., Harris, R.P.L., Sayre, L.M., Beckman, J.S. and Perry, G. (1997) Widespread peroxynitrite-mediated damage in Alzheimer’s disease.Journal of Neuroscience,17, 2653–2657.

    PubMed  CAS  Google Scholar 

  • Subbarao, K.V., Richardson, J.S. and Ang, L.C. (1990) Autopsy samples of Alzheimer’s cortex show increased lipid peroxidationin vitro.Journal of Neurochemistry,55, 342–345.

    Article  PubMed  CAS  Google Scholar 

  • Tsai, A.L., Palmer, G. and Kulmacz, R.J. (1992) Prostaglandin H synthase: kinetics of tyrosyl radical formation and of cyclooxygenase catalysis.Journal of Biological Chemistry,267, 17753–17759.

    PubMed  CAS  Google Scholar 

  • Trotti, D., Rossi, D., Gjesdal, O., Levy, L.M., Racagni, G., Danbolt, N.C. and Volterra, A. (1996) Peroxynitrite inhibits glutamate transporter subtypes.Journal of Biological Chemistry,271, 5976–5979.

    Article  PubMed  CAS  Google Scholar 

  • Vodovotz, Y, Lucia, M.S., Flanders, K.C., Chesler, L., Xie, Q.W., Smith, T.W., Weidner, J., Mumford, R., Webber, R., Nathan, C., Roberts, A.B., Lippa, C.F. and Sporn, M.B. (1996) Inducible nitric oxide synthase in tangle-bearing neurons of patients with Alzheimer’s disease.Journal of Experimental Medicine,184, 1425–1433.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Thomas R. Rupniak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rupniak, H.T.R., Joy, K.A., Atkin, C. et al. Oxidative neuropathology and putative chemical entities for alzheimer’s disease: Neuroprotective effects of salen-manganese catalytic anti-oxidants. neurotox res 2, 167–178 (2000). https://doi.org/10.1007/BF03033792

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03033792

Keywords

Navigation